論文の概要: Hierarchical Fallback Architecture for High Risk Online Machine Learning Inference
- arxiv url: http://arxiv.org/abs/2501.17834v1
- Date: Wed, 29 Jan 2025 18:30:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:54:51.076288
- Title: Hierarchical Fallback Architecture for High Risk Online Machine Learning Inference
- Title(参考訳): 高リスクオンライン機械学習推論のための階層型フォールバックアーキテクチャ
- Authors: Gustavo Polleti, Marlesson Santana, Felipe Sassi Del Sant, Eduardo Fontes,
- Abstract要約: オープンバンキングを利用した機械学習アプリケーションは、困難なストレスと障害シナリオに対処するための新しいアプローチを必要とする。
本稿では,金融分野に着目した高リスク機械学習アプリケーションにおけるロバスト性向上のための階層型フォールバックアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Open Banking powered machine learning applications require novel robustness approaches to deal with challenging stress and failure scenarios. In this paper we propose an hierarchical fallback architecture for improving robustness in high risk machine learning applications with a focus in the financial domain. We define generic failure scenarios often found in online inference that depend on external data providers and we describe in detail how to apply the hierarchical fallback architecture to address them. Finally, we offer a real world example of its applicability in the industry for near-real time transactional fraud risk evaluation using Open Banking data and under extreme stress scenarios.
- Abstract(参考訳): オープンバンキングを利用した機械学習アプリケーションは、困難なストレスと障害シナリオに対処するために、新しい堅牢性アプローチを必要とする。
本稿では,金融分野に着目した高リスク機械学習アプリケーションにおけるロバスト性向上のための階層型フォールバックアーキテクチャを提案する。
私たちは、外部データプロバイダに依存するオンライン推論でよく見られる一般的な障害シナリオを定義し、階層的なフォールバックアーキテクチャの適用方法を詳細に説明します。
最後に、オープンバンキングデータと極端なストレスシナリオを用いて、ほぼリアルタイムに取引詐欺リスク評価を行うために、業界におけるその適用性の実例を紹介します。
関連論文リスト
- Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
金融セクターにおける悪意ある攻撃のエスカレートリスクを考えると、機械学習モデルの敵戦略と堅牢な防御メカニズムを理解することが重要である。
本研究の目的は、逐次的な財務データを入力として使用するニューラルネットワークモデルに対する敵攻撃と防御の現状とダイナミクスを調査することである。
我々は、現代の金融取引データにおける問題の現実的かつ詳細な調査を可能にする競争を設計した。
参加者は直接対決するので、実生活に近い環境で攻撃や防御が検討される。
論文 参考訳(メタデータ) (2023-08-22T12:53:09Z) - DeRisk: An Effective Deep Learning Framework for Credit Risk Prediction
over Real-World Financial Data [13.480823015283574]
実世界の金融データに対する信用リスク予測のための効果的なディープラーニングリスク予測フレームワークであるDeRiskを提案する。
DeRiskは、当社のプロダクションシステムにデプロイされた統計的学習アプローチよりも優れた、最初のディープリスク予測モデルです。
論文 参考訳(メタデータ) (2023-08-07T16:22:59Z) - Scalable and Weakly Supervised Bank Transaction Classification [0.0]
本稿では,弱い監督,自然言語処理,深層ニューラルネットワークトレーニングを用いて,銀行取引を分類することを目的とする。
データ前処理、トランザクションテキストの埋め込み、アンカー化、ラベル生成、識別ニューラルネットワークトレーニングを含む、効果的でスケーラブルなエンドツーエンドデータパイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-28T23:12:12Z) - UQ for Credit Risk Management: A deep evidence regression approach [3.42658286826597]
我々は、スケーラブルなUQ対応ディープラーニング技術であるDeep Evidence Regressionの適用について検討し、Loss given Defaultの予測に適用した。
我々は,Weibullプロセスによって生成される対象変数を学習するために,Deep Evidence Regression方法論を拡張して文献に貢献する。
シミュレーションデータと実世界のデータの両方に対する我々のアプローチの応用を実証する。
論文 参考訳(メタデータ) (2023-05-08T18:03:01Z) - FIRE: A Failure-Adaptive Reinforcement Learning Framework for Edge Computing Migrations [52.85536740465277]
FIREは、エッジコンピューティングのディジタルツイン環境でRLポリシーをトレーニングすることで、まれなイベントに適応するフレームワークである。
ImREは重要なサンプリングに基づくQ-ラーニングアルゴリズムであり、希少事象をその値関数への影響に比例してサンプリングする。
FIREは故障時にバニラRLやグリーディベースラインと比較してコストを削減できることを示す。
論文 参考訳(メタデータ) (2022-09-28T19:49:39Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Explainable AI in Credit Risk Management [0.0]
機械学習(ML)に基づく信用スコアリングモデルに対して,局所解釈モデル予測説明(LIME)とSHapley Additive exPlanations(SHAP)という2つの高度な説明可能性手法を実装した。
具体的には、LIMEを使用してインスタンスをローカルとSHAPで説明し、ローカルとグローバルの両方で説明します。
SHAP値を用いて生成されたグラフを説明するために利用可能なさまざまなカーネルを使用して、結果を詳細に議論し、複数の比較シナリオを提示する。
論文 参考訳(メタデータ) (2021-03-01T12:23:20Z) - Sequential Deep Learning for Credit Risk Monitoring with Tabular
Financial Data [0.901219858596044]
深層学習による信用リスク評価の新たなアプローチを創出する試みを紹介します。
本稿では,深い再帰と因果畳み込みに基づくニューラルネットワークを用いた新しいクレジットカードトランザクションサンプリング手法を提案する。
時間的畳み込みネットワークを用いた逐次的深層学習アプローチは、ベンチマーク非逐次木モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-30T21:29:48Z) - Predicting Themes within Complex Unstructured Texts: A Case Study on
Safeguarding Reports [66.39150945184683]
本稿では,教師付き分類手法を用いた保護レポートにおいて,主テーマの自動識別の問題に焦点をあてる。
この結果から,ラベル付きデータに制限のある複雑なタスクであっても,深層学習モデルが対象知識の振る舞いをシミュレートする可能性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T19:48:23Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z) - Adversarial Attacks on Machine Learning Systems for High-Frequency
Trading [55.30403936506338]
逆機械学習の観点から,アルゴリズム取引のバリュエーションモデルについて検討する。
攻撃コストを最小限に抑えるサイズ制約で、このドメインに特有の新たな攻撃を導入する。
本稿では、金融モデルのロバスト性について研究・評価するための分析ツールとして、これらの攻撃がどのように利用できるかについて論じる。
論文 参考訳(メタデータ) (2020-02-21T22:04:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。