論文の概要: Explainable and Robust Millimeter Wave Beam Alignment for AI-Native 6G Networks
- arxiv url: http://arxiv.org/abs/2501.17883v1
- Date: Thu, 23 Jan 2025 09:47:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-02 07:52:41.424529
- Title: Explainable and Robust Millimeter Wave Beam Alignment for AI-Native 6G Networks
- Title(参考訳): AI-Native 6Gネットワークのための説明可能かつロバストなミリ波ビームアライメント
- Authors: Nasir Khan, Asmaa Abdallah, Abdulkadir Celik, Ahmed M. Eltawil, Sinem Coleri,
- Abstract要約: 本稿では,ミリ波マルチインプット多重出力(MIMO)システムのための,頑健な深層学習(DL)ベースのビームアライメントエンジン(BAE)を開発した。
CNNベースのBAEは、受信信号強度指標(RSSI)をワイドビームのセット上で測定し、UE毎に最適な狭ビームを正確に予測する。
提案するフレームワークは、検出の堅牢性を最大5倍改善し、ビーム予測決定に関するより明確な洞察を提供する。
- 参考スコア(独自算出の注目度): 18.49800990388549
- License:
- Abstract: Integrated artificial intelligence (AI) and communication has been recognized as a key pillar of 6G and beyond networks. In line with AI-native 6G vision, explainability and robustness in AI-driven systems are critical for establishing trust and ensuring reliable performance in diverse and evolving environments. This paper addresses these challenges by developing a robust and explainable deep learning (DL)-based beam alignment engine (BAE) for millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. The proposed convolutional neural network (CNN)-based BAE utilizes received signal strength indicator (RSSI) measurements over a set of wide beams to accurately predict the best narrow beam for each UE, significantly reducing the overhead associated with exhaustive codebook-based narrow beam sweeping for initial access (IA) and data transmission. To ensure transparency and resilience, the Deep k-Nearest Neighbors (DkNN) algorithm is employed to assess the internal representations of the network via nearest neighbor approach, providing human-interpretable explanations and confidence metrics for detecting out-of-distribution inputs. Experimental results demonstrate that the proposed DL-based BAE exhibits robustness to measurement noise, reduces beam training overhead by 75% compared to the exhaustive search while maintaining near-optimal performance in terms of spectral efficiency. Moreover, the proposed framework improves outlier detection robustness by up to 5x and offers clearer insights into beam prediction decisions compared to traditional softmax-based classifiers.
- Abstract(参考訳): 統合人工知能(AI)と通信は6Gおよびそれ以上のネットワークの重要な柱として認識されている。
AIネイティブな6Gビジョンと並行して、AI駆動システムの説明可能性と堅牢性は、信頼性を確立し、多様な進化環境における信頼性の高いパフォーマンスを保証する上で重要である。
本稿では、ミリ波マルチインプット多重出力(MIMO)システムのための、堅牢で説明可能な深層学習(DL)ベースのビームアライメントエンジン(BAE)を開発することで、これらの課題に対処する。
提案した畳み込みニューラルネットワーク(CNN)ベースのBAEは、受信信号強度インジケータ(RSSI)測定を用いて、UE毎に最適な狭ビームを正確に予測し、初期アクセス(IA)とデータ送信のための全コードブックベースの狭ビームスイーピングに伴うオーバーヘッドを著しく低減する。
透明性とレジリエンスを確保するために、Deep k-Nearest Neighbors (DkNN)アルゴリズムを使用して、近接するアプローチを通じてネットワークの内部表現を評価し、人為的に解釈可能な説明と信頼性メトリクスを提供し、配布外入力を検出する。
実験結果から,提案したDLベースBAEは計測ノイズに対する頑健性を示し,スペクトル効率の観点からほぼ最適性能を維持しながら,ビームトレーニングのオーバーヘッドを約75%低減することがわかった。
さらに,提案フレームワークは,従来のソフトマックス分類器と比較して,最大5倍の精度で外乱検出の堅牢性を向上し,ビーム予測決定に対するより明確な洞察を提供する。
関連論文リスト
- 5G NR PRACH Detection with Convolutional Neural Networks (CNN): Overcoming Cell Interference Challenges [0.0]
畳み込みニューラルネットワーク(CNN)を用いた5Gニューラジオ(5G-NR)ネットワークにおける干渉検出の新しい手法を提案する。
我々のCNNベースのモデルは、様々な干渉シナリオの中で物理ランダムアクセスチャンネル(PRACH)のシーケンスを検出するように設計されている。
実験の結果,従来のPRACH検出手法よりも精度,精度,リコール,F1スコアが優れていた。
論文 参考訳(メタデータ) (2024-08-21T14:33:43Z) - Synchronous Faithfulness Monitoring for Trustworthy Retrieval-Augmented Generation [96.78845113346809]
Retrieval-augmented Language Model (RALMs) は、知識集約型タスクにおいて、高い性能と幅広い適用性を示している。
本稿では,非偽文の検出に微細な復号力学を利用する軽量モニタであるSynCheckを提案する。
また、長文検索拡張生成のためのビームサーチによって導かれる忠実度指向の復号アルゴリズムであるFODを導入する。
論文 参考訳(メタデータ) (2024-06-19T16:42:57Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for
CAVs [11.15939066175832]
妨害攻撃は5Gネットワークに重大なリスクをもたらす。
本研究は, CAVネットワークにおけるジャマー検出のための, 深層学習に基づく新しい手法を提案する。
提案手法は, 余剰低妨害電力の96.4%検出率を実現する。
論文 参考訳(メタデータ) (2024-03-05T04:29:31Z) - Deep Learning Based Uplink Multi-User SIMO Beamforming Design [32.00286337259923]
5G無線通信ネットワークは、高いデータレート、広範なカバレッジ、最小レイテンシ、エネルギー効率のパフォーマンスを提供する。
計算複雑性や動的条件に適応する能力に関して、従来のアプローチには欠点がある。
本稿では,アップリンク受信型マルチユーザ入力多重出力(MU-SIMO)ビームフォーミングの設計のための,NNBFと呼ばれる新しい教師なしディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-28T17:04:41Z) - Deep Learning and Image Super-Resolution-Guided Beam and Power
Allocation for mmWave Networks [80.37827344656048]
我々は,ミリ波(mmWave)ネットワークのためのディープラーニング(DL)誘導ハイブリッドビームとパワーアロケーションアプローチを開発した。
教師付き学習と超解像技術の相乗効果を利用して、低オーバヘッドビームとパワーアロケーションを実現する。
論文 参考訳(メタデータ) (2023-05-08T05:40:54Z) - Adversarial Attacks on Deep Learning Based mmWave Beam Prediction in 5G
and Beyond [46.34482158291128]
ディープニューラルネットワーク(DNN)は、受信信号強度(RSS)を用いて各UEに最もスランシングされたビームを、可能な狭いビームのサブセットから予測することができる。
そこで本稿では,DNN への入力として,航空機上で捕獲した RSS を操作するための摂動を発生させることにより,敵攻撃を提案する。
この攻撃によりIA性能が大幅に低下し、DNNはガウスや均一なノイズで攻撃を妨害するよりも小さなRSSのビームを選択することにだまされる。
論文 参考訳(メタデータ) (2021-03-25T17:25:21Z) - Learning Robust Beamforming for MISO Downlink Systems [14.429561340880074]
基地局は、不完全なチャネル状態情報(CSI)とその特徴だけで効率的なマルチアンテナ伝送戦略を特定する。
深層ニューラルネットワーク(DNN)を実世界の伝播環境に合わせて最適化した堅牢なトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-02T09:56:35Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
本稿では,低分解能表現が「容易」な入力を分類するのに十分である,という直感に触発された新しいレゾリューション適応ネットワーク(RANet)を提案する。
RANetでは、入力画像はまず、低解像度表現を効率的に抽出する軽量サブネットワークにルーティングされる。
ネットワーク内の高解像度パスは、"ハード"サンプルを認識する能力を維持している。
論文 参考訳(メタデータ) (2020-03-16T16:54:36Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。