論文の概要: Transformer-Driven Neural Beamforming with Imperfect CSI in Urban Macro Wireless Channels
- arxiv url: http://arxiv.org/abs/2504.11667v1
- Date: Tue, 15 Apr 2025 23:41:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:38:09.697332
- Title: Transformer-Driven Neural Beamforming with Imperfect CSI in Urban Macro Wireless Channels
- Title(参考訳): 都市マクロ無線通信路における不完全CSIを用いた変圧器駆動型ニューラルビームフォーミング
- Authors: Cemil Vahapoglu, Timothy J. O'Shea, Wan Liu, Tamoghna Roy, Sennur Ulukus,
- Abstract要約: 本研究では,不完全なチャネル状態情報下でのビーム形成重みを生成するために,深層的に分離可能な畳み込みと変圧器を統合した新しい教師なしディープラーニングフレームワークを提案する。
主な目標は、信頼性の高い通信を確保しながら、総和レートを最大化することでスループットを向上させることである。
- 参考スコア(独自算出の注目度): 27.445841110148674
- License:
- Abstract: The literature is abundant with methodologies focusing on using transformer architectures due to their prominence in wireless signal processing and their capability to capture long-range dependencies via attention mechanisms. In particular, depthwise separable convolutions enhance parameter efficiency for the process of high-dimensional data characteristics of MIMO systems. In this work, we introduce a novel unsupervised deep learning framework that integrates depthwise separable convolutions and transformers to generate beamforming weights under imperfect channel state information (CSI) for a multi-user single-input multiple-output (MU-SIMO) system in dense urban environments. The primary goal is to enhance throughput by maximizing sum-rate while ensuring reliable communication. Spectral efficiency and block error rate (BLER) are considered as performance metrics. Experiments are carried out under various conditions to compare the performance of the proposed NNBF framework against baseline methods zero-forcing beamforming (ZFBF) and minimum mean square error (MMSE) beamforming. Experimental results demonstrate the superiority of the proposed framework over the baseline techniques.
- Abstract(参考訳): この文献は、無線信号処理における顕著さと、注意機構を介して長距離依存を捕捉する能力により、トランスフォーマーアーキテクチャの使用に焦点を当てた手法が豊富である。
特に、深度分離可能な畳み込みはMIMOシステムの高次元データ特性のプロセスにおけるパラメータ効率を向上させる。
本研究では,都市環境におけるマルチユーザ・シングル・インプット・マルチ・アウトプット(MU-SIMO)システムに対して,不完全なチャネル状態情報(CSI)の下でビームフォーミング重みを生成するために,奥行き分離可能な畳み込みと変圧器を統合した新しい非教師なしディープラーニングフレームワークを提案する。
主な目標は、信頼性の高い通信を確保しながら、総和レートを最大化することでスループットを向上させることである。
スペクトル効率とブロックエラー率(BLER)はパフォーマンス指標である。
提案したNNBFフレームワークの性能をゼロ強制ビームフォーミング(ZFBF)と最小平均二乗誤差(MMSE)ビームフォーミング(MMSE)と比較するために,様々な条件下で実験を行った。
実験により,提案手法がベースライン技術よりも優れていることを示す。
関連論文リスト
- A Low-Complexity Plug-and-Play Deep Learning Model for Massive MIMO Precoding Across Sites [5.896656636095934]
MMIMO技術は、スペクトル効率とネットワーク容量を向上させることで、無線通信を変革した。
本稿では,既存のアプローチの複雑性問題に対処するための,新しいディープラーニングベースのmMIMOプリコーダを提案する。
論文 参考訳(メタデータ) (2025-02-12T20:02:36Z) - Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based? [89.05848771674773]
MISO (Multiple-input Single-output) フレームワークを提案する。
それは複数の導波路で構成されており、多数の低コストアンテナ(PA)を備えている。
PAの位置は、大規模パスと空間の両方にまたがるように再構成することができる。
論文 参考訳(メタデータ) (2025-02-12T18:54:10Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Digital Over-the-Air Federated Learning in Multi-Antenna Systems [30.137208705209627]
デジタル変調とオーバー・ザ・エア計算(AirComp)を用いた現実的な無線通信システム上でのフェデレーション学習(FL)の性能最適化について検討する。
本稿では,デジタル変調とAirCompを組み合わせたFedAvg(FedAvg)アルゴリズムを提案する。
人工ニューラルネットワーク(ANN)は、すべてのデバイスの局所FLモデルを推定し、将来のモデル伝送のためにPSのビーム形成行列を調整するために使用される。
論文 参考訳(メタデータ) (2023-02-04T07:26:06Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
チャネル推定とビームフォーミングは、周波数分割二重化(FDD)大規模マルチインプット多重出力(MIMO)システムにおいて重要な役割を果たす。
受信したアップリンクパイロットに応じて,基地局のビームフォーマを直接最適化する深層学習方式を提案する。
エンド・ツー・エンドの設計のスケーラビリティを向上させるために,ニューラルキャリブレーション法を提案する。
論文 参考訳(メタデータ) (2021-08-03T14:26:14Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
大規模マルチインプット多重出力(MIMO)ネットワークにおいて最適なビームフォーマを見つけることはよく知られている問題である。
本稿では,この問題に対処するための新しい深層学習に基づく論文アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-08T12:48:06Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming [1.290382979353427]
ハイブリッドビームフォーミングは、MIMO(Multiple-input multiple-output)システムの複雑さとコストを低減するための有望な技術である。
本稿では,ハイブリッドビームフォーミングを設計するためのRSSIに基づく非教師なし深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T18:10:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。