Large Language Models Think Too Fast To Explore Effectively
- URL: http://arxiv.org/abs/2501.18009v2
- Date: Mon, 12 May 2025 16:02:08 GMT
- Title: Large Language Models Think Too Fast To Explore Effectively
- Authors: Lan Pan, Hanbo Xie, Robert C. Wilson,
- Abstract summary: Large Language Models (LLMs) have emerged with many intellectual capacities.<n>This study investigates whether LLMs can surpass humans in exploration during an open-ended task.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have emerged with many intellectual capacities. While numerous benchmarks assess their intelligence, limited attention has been given to their ability to explore--an essential capacity for discovering new information and adapting to novel environments in both natural and artificial systems. The extent to which LLMs can effectively explore, particularly in open-ended tasks, remains unclear. This study investigates whether LLMs can surpass humans in exploration during an open-ended task, using Little Alchemy 2 as a paradigm, where agents combine elements to discover new ones. Results show most LLMs underperform compared to humans, except for the o1 model, with traditional LLMs relying primarily on uncertainty-driven strategies, unlike humans who balance uncertainty and empowerment. Results indicate that traditional reasoning-focused LLMs, such as GPT-4o, exhibit a significantly faster and less detailed reasoning process, limiting their exploratory performance. In contrast, the DeepSeek reasoning model demonstrates prolonged, iterative thought processes marked by repetitive analysis of combinations and past trials, reflecting a more thorough and human-like exploration strategy. Representational analysis of the models with Sparse Autoencoders (SAE) revealed that uncertainty and choices are represented at earlier transformer blocks, while empowerment values are processed later, causing LLMs to think too fast and make premature decisions, hindering effective exploration. These findings shed light on the limitations of LLM exploration and suggest directions for improving their adaptability.
Related papers
- Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Tasks [6.355245936740126]
Large language models (LLMs) are increasingly used to simulate or automate human behavior in sequential decision-making tasks.<n>We focus on the exploration-exploitation (E&E) tradeoff, a fundamental aspect of dynamic decision-making under uncertainty.<n>We find that reasoning shifts LLMs toward more human-like behavior, characterized by a mix of random and directed exploration.
arXiv Detail & Related papers (2025-05-15T02:09:18Z) - LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities [21.42711537107199]
We study why Large Language Models (LLMs) perform sub-optimally in decision-making scenarios.
We propose mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL) on self-generated CoT rationales.
arXiv Detail & Related papers (2025-04-22T17:57:14Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Should You Use Your Large Language Model to Explore or Exploit? [55.562545113247666]
We evaluate the ability of large language models to help a decision-making agent facing an exploration-exploitation tradeoff.
We find that while the current LLMs often struggle to exploit, in-context mitigations may be used to substantially improve performance for small-scale tasks.
arXiv Detail & Related papers (2025-01-31T23:42:53Z) - Causality for Large Language Models [37.10970529459278]
Large language models (LLMs) with billions or trillions of parameters are trained on vast datasets, achieving unprecedented success across a series of language tasks.
Recent research highlights that LLMs function as causal parrots, capable of reciting causal knowledge without truly understanding or applying it.
This survey aims to explore how causality can enhance LLMs at every stage of their lifecycle.
arXiv Detail & Related papers (2024-10-20T07:22:23Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - Can Large Language Models Create New Knowledge for Spatial Reasoning Tasks? [0.0]
We observe that Large Language Models (LLMs) are able to perform sophisticated reasoning on problems with a spatial dimension.
This points to a significant level of understanding that state-of-the-art LLMs can now achieve.
arXiv Detail & Related papers (2024-05-23T09:54:54Z) - Look Before You Decide: Prompting Active Deduction of MLLMs for Assumptive Reasoning [77.72128397088409]
We show that most prevalent MLLMs can be easily fooled by the introduction of a presupposition into the question.<n>We also propose a novel reinforcement learning paradigm to encourage the model to actively perform composite deduction.
arXiv Detail & Related papers (2024-04-19T15:53:27Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
Large language models (LLMs) have made remarkable progress in a wide range of natural language understanding and generation tasks.
We present a comprehensive evaluation framework on various types of NLU tasks, which covers all key factors in determining LLMs' capability of generating counterfactuals.
arXiv Detail & Related papers (2023-05-24T06:44:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.