ISAM-MTL: Cross-subject multi-task learning model with identifiable spikes and associative memory networks
- URL: http://arxiv.org/abs/2501.18089v1
- Date: Thu, 30 Jan 2025 02:00:48 GMT
- Title: ISAM-MTL: Cross-subject multi-task learning model with identifiable spikes and associative memory networks
- Authors: Junyan Li, Bin Hu, Zhi-Hong Guan,
- Abstract summary: Cross-subject variability in EEG degrades performance of current deep learning models.
This paper proposes ISAM-MTL, which is a multi-task learning (MTL) EEG classification model based on identifiable spiking (IS) representations and associative memory (AM) networks.
- Score: 6.240145569484483
- License:
- Abstract: Cross-subject variability in EEG degrades performance of current deep learning models, limiting the development of brain-computer interface (BCI). This paper proposes ISAM-MTL, which is a multi-task learning (MTL) EEG classification model based on identifiable spiking (IS) representations and associative memory (AM) networks. The proposed model treats EEG classification of each subject as an independent task and leverages cross-subject data training to facilitate feature sharing across subjects. ISAM-MTL consists of a spiking feature extractor that captures shared features across subjects and a subject-specific bidirectional associative memory network that is trained by Hebbian learning for efficient and fast within-subject EEG classification. ISAM-MTL integrates learned spiking neural representations with bidirectional associative memory for cross-subject EEG classification. The model employs label-guided variational inference to construct identifiable spike representations, enhancing classification accuracy. Experimental results on two BCI Competition datasets demonstrate that ISAM-MTL improves the average accuracy of cross-subject EEG classification while reducing performance variability among subjects. The model further exhibits the characteristics of few-shot learning and identifiable neural activity beneath EEG, enabling rapid and interpretable calibration for BCI systems.
Related papers
- AM-MTEEG: Multi-task EEG classification based on impulsive associative memory [6.240145569484483]
We propose a multi-task (MT) classification model, called AM-MTEEG, inspired by the principles of learning and memory in the human hippocampus.
The model treats the EEG classification of each individual as an independent task and facilitates feature sharing across individuals.
Experimental results in two BCI competition datasets show that our model improves average accuracy compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-27T01:33:45Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - EEG-SCMM: Soft Contrastive Masked Modeling for Cross-Corpus EEG-Based Emotion Recognition [0.862468061241377]
We propose a novel Soft Contrastive Masked Modeling (SCMM) framework for emotion recognition.
SCMM integrates soft contrastive learning with a new hybrid masking strategy to effectively mine the "short-term continuity" characteristics inherent in human emotions.
Experiments show that SCMM achieves state-of-the-art (SOTA) performance, outperforming the second-best method by an average accuracy of 4.26%.
arXiv Detail & Related papers (2024-08-17T12:35:13Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively [69.97238935096094]
The Open-Vocabulary SAM is a SAM-inspired model designed for simultaneous interactive segmentation and recognition.
Our method can segment and recognize approximately 22,000 classes.
arXiv Detail & Related papers (2024-01-05T18:59:22Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Subject-Independent Drowsiness Recognition from Single-Channel EEG with
an Interpretable CNN-LSTM model [0.8250892979520543]
We propose a novel Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) model for subject-independent drowsiness recognition from single-channel EEG signals.
Results show that the model achieves an average accuracy of 72.97% on 11 subjects for leave-one-out subject-independent drowsiness recognition on a public dataset.
arXiv Detail & Related papers (2021-11-21T10:37:35Z) - Common Spatial Generative Adversarial Networks based EEG Data
Augmentation for Cross-Subject Brain-Computer Interface [4.8276709243429]
Cross-subject application of EEG-based brain-computer interface (BCI) has always been limited by large individual difference and complex characteristics that are difficult to perceive.
We propose a cross-subject EEG classification framework with a generative adversarial networks (GANs) based method named common spatial GAN (CS-GAN)
Our framework provides a promising way to deal with the cross-subject problem and promote the practical application of BCI.
arXiv Detail & Related papers (2021-02-08T10:37:03Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
Brain-Computer Interfaces (BCI) based on Electroencephalography (EEG) signals have received a lot of attention.
Motor imagery (MI) data can be used to aid rehabilitation as well as in autonomous driving scenarios.
classification of MI signals is vital for EEG-based BCI systems.
arXiv Detail & Related papers (2020-03-03T02:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.