AM-MTEEG: Multi-task EEG classification based on impulsive associative memory
- URL: http://arxiv.org/abs/2409.18375v1
- Date: Fri, 27 Sep 2024 01:33:45 GMT
- Title: AM-MTEEG: Multi-task EEG classification based on impulsive associative memory
- Authors: Junyan Li, Bin Hu, Zhi-Hong Guan,
- Abstract summary: We propose a multi-task (MT) classification model, called AM-MTEEG, inspired by the principles of learning and memory in the human hippocampus.
The model treats the EEG classification of each individual as an independent task and facilitates feature sharing across individuals.
Experimental results in two BCI competition datasets show that our model improves average accuracy compared to state-of-the-art models.
- Score: 6.240145569484483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalogram-based brain-computer interface (BCI) has potential applications in various fields, but their development is hindered by limited data and significant cross-individual variability. Inspired by the principles of learning and memory in the human hippocampus, we propose a multi-task (MT) classification model, called AM-MTEEG, which combines learning-based impulsive neural representations with bidirectional associative memory (AM) for cross-individual BCI classification tasks. The model treats the EEG classification of each individual as an independent task and facilitates feature sharing across individuals. Our model consists of an impulsive neural population coupled with a convolutional encoder-decoder to extract shared features and a bidirectional associative memory matrix to map features to class. Experimental results in two BCI competition datasets show that our model improves average accuracy compared to state-of-the-art models and reduces performance variance across individuals, and the waveforms reconstructed by the bidirectional associative memory provide interpretability for the model's classification results. The neuronal firing patterns in our model are highly coordinated, similarly to the neural coding of hippocampal neurons, indicating that our model has biological similarities.
Related papers
- A Differentiable Approach to Multi-scale Brain Modeling [3.5874544981360987]
We present a multi-scale differentiable brain modeling workflow utilizing BrainPy, a unique differentiable brain simulator.
At the single-neuron level, we implement differentiable neuron models and employ gradient methods to optimize their fit to electrophysiological data.
On the network level, we incorporate connectomic data to construct biologically constrained network models.
arXiv Detail & Related papers (2024-06-28T07:41:31Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Benchmarking Hebbian learning rules for associative memory [0.0]
Associative memory is a key concept in cognitive and computational brain science.
We benchmark six different learning rules on storage capacity and prototype extraction.
arXiv Detail & Related papers (2023-12-30T21:49:47Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Brain dynamics via Cumulative Auto-Regressive Self-Attention [0.0]
We present a model that is considerably shallow than deep graph neural networks (GNNs)
Our model learns the autoregressive structure of individual time series and estimates directed connectivity graphs.
We demonstrate our results on a functional neuroimaging dataset classifying schizophrenia patients and controls.
arXiv Detail & Related papers (2021-11-01T21:50:35Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Identification of brain states, transitions, and communities using
functional MRI [0.5872014229110214]
We propose a Bayesian model-based characterization of latent brain states and showcase a novel method based on posterior predictive discrepancy.
Our results obtained through an analysis of task-fMRI data show appropriate lags between external task demands and change-points between brain states.
arXiv Detail & Related papers (2021-01-26T08:10:00Z) - Ensemble manifold based regularized multi-modal graph convolutional
network for cognitive ability prediction [33.03449099154264]
Multi-modal functional magnetic resonance imaging (fMRI) can be used to make predictions about individual behavioral and cognitive traits based on brain connectivity networks.
We propose an interpretable multi-modal graph convolutional network (MGCN) model, incorporating the fMRI time series and the functional connectivity (FC) between each pair of brain regions.
We validate our MGCN model on the Philadelphia Neurodevelopmental Cohort to predict individual wide range achievement test (WRAT) score.
arXiv Detail & Related papers (2021-01-20T20:53:07Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.