Efficient Audiovisual Speech Processing via MUTUD: Multimodal Training and Unimodal Deployment
- URL: http://arxiv.org/abs/2501.18157v1
- Date: Thu, 30 Jan 2025 05:46:30 GMT
- Title: Efficient Audiovisual Speech Processing via MUTUD: Multimodal Training and Unimodal Deployment
- Authors: Joanna Hong, Sanjeel Parekh, Honglie Chen, Jacob Donley, Ke Tan, Buye Xu, Anurag Kumar,
- Abstract summary: Building reliable speech systems often requires combining multiple modalities, like audio and visual cues.
We propose a Multimodal Training and Unimodal Deployment (MUTUD) framework which includes a Temporally Aligned Modality feature Estimation (TAME) module.
This innovative approach facilitates the integration of information across different modalities, enhancing the overall inference process by leveraging the strengths of each modality to compensate for the absence of certain modalities during inference.
- Score: 19.067586642181368
- License:
- Abstract: Building reliable speech systems often requires combining multiple modalities, like audio and visual cues. While such multimodal solutions frequently lead to improvements in performance and may even be critical in certain cases, they come with several constraints such as increased sensory requirements, computational cost, and modality synchronization, to mention a few. These challenges constrain the direct uses of these multimodal solutions in real-world applications. In this work, we develop approaches where the learning happens with all available modalities but the deployment or inference is done with just one or reduced modalities. To do so, we propose a Multimodal Training and Unimodal Deployment (MUTUD) framework which includes a Temporally Aligned Modality feature Estimation (TAME) module that can estimate information from missing modality using modalities present during inference. This innovative approach facilitates the integration of information across different modalities, enhancing the overall inference process by leveraging the strengths of each modality to compensate for the absence of certain modalities during inference. We apply MUTUD to various audiovisual speech tasks and show that it can reduce the performance gap between the multimodal and corresponding unimodal models to a considerable extent. MUTUD can achieve this while reducing the model size and compute compared to multimodal models, in some cases by almost 80%.
Related papers
- MIND: Modality-Informed Knowledge Distillation Framework for Multimodal Clinical Prediction Tasks [50.98856172702256]
We propose the Modality-INformed knowledge Distillation (MIND) framework, a multimodal model compression approach.
MIND transfers knowledge from ensembles of pre-trained deep neural networks of varying sizes into a smaller multimodal student.
We evaluate MIND on binary and multilabel clinical prediction tasks using time series data and chest X-ray images.
arXiv Detail & Related papers (2025-02-03T08:50:00Z) - Enhancing Unimodal Latent Representations in Multimodal VAEs through Iterative Amortized Inference [20.761803725098005]
Multimodal variational autoencoders (VAEs) aim to capture shared latent representations by integrating information from different data modalities.
A significant challenge is accurately inferring representations from any subset of modalities without training an impractical number of inference networks for all possible modality combinations.
We introduce multimodal iterative amortized inference, an iterative refinement mechanism within the multimodal VAE framework.
arXiv Detail & Related papers (2024-10-15T08:49:38Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
In real-world scenarios, consistently acquiring complete multimodal data presents significant challenges.
This often leads to the issue of missing modalities, where data for certain modalities are absent.
We propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method.
arXiv Detail & Related papers (2024-07-17T14:44:25Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - On Uni-Modal Feature Learning in Supervised Multi-Modal Learning [21.822251958013737]
We abstract the features (i.e. learned representations) of multi-modal data into 1) uni-modal features, which can be learned from uni-modal training, and 2) paired features, which can only be learned from cross-modal interactions.
We demonstrate that, under a simple guiding strategy, we can achieve comparable results to other complex late-fusion or intermediate-fusion methods on various multi-modal datasets.
arXiv Detail & Related papers (2023-05-02T07:15:10Z) - On Robustness in Multimodal Learning [75.03719000820388]
Multimodal learning is defined as learning over multiple input modalities such as video, audio, and text.
We present a multimodal robustness framework to provide a systematic analysis of common multimodal representation learning methods.
arXiv Detail & Related papers (2023-04-10T05:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.