Using Computer Vision for Skin Disease Diagnosis in Bangladesh Enhancing Interpretability and Transparency in Deep Learning Models for Skin Cancer Classification
- URL: http://arxiv.org/abs/2501.18161v1
- Date: Thu, 30 Jan 2025 06:06:07 GMT
- Title: Using Computer Vision for Skin Disease Diagnosis in Bangladesh Enhancing Interpretability and Transparency in Deep Learning Models for Skin Cancer Classification
- Authors: Rafiul Islam, Jihad Khan Dipu, Mehedi Hasan Tusar,
- Abstract summary: Bangladesh faces a shortage of dermatologists and qualified medical professionals capable of diagnosing and treating skin cancer.
Deep learning algorithms can effectively classify skin cancer images.
We present a method aimed at enhancing the interpretability of deep learning models for skin cancer classification in Bangladesh.
- Score: 0.0
- License:
- Abstract: With over 2 million new cases identified annually, skin cancer is the most prevalent type of cancer globally and the second most common in Bangladesh, following breast cancer. Early detection and treatment are crucial for enhancing patient outcomes; however, Bangladesh faces a shortage of dermatologists and qualified medical professionals capable of diagnosing and treating skin cancer. As a result, many cases are diagnosed only at advanced stages. Research indicates that deep learning algorithms can effectively classify skin cancer images. However, these models typically lack interpretability, making it challenging to understand their decision-making processes. This lack of clarity poses barriers to utilizing deep learning in improving skin cancer detection and treatment. In this article, we present a method aimed at enhancing the interpretability of deep learning models for skin cancer classification in Bangladesh. Our technique employs a combination of saliency maps and attention maps to visualize critical features influencing the model's diagnoses.
Related papers
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias.
We propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism.
Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
arXiv Detail & Related papers (2024-10-29T21:37:03Z) - Skin Cancer Images Classification using Transfer Learning Techniques [0.0]
Early diagnosis of skin cancer at a benign stage is critical to reducing cancer mortality.
Previous studies have addressed the problem of skin cancer diagnosis using various deep learning and transfer learning models.
In this work, we applied five different pre-trained transfer learning approaches for binary classification of skin cancer detection at benign and malignant stages.
arXiv Detail & Related papers (2024-06-18T15:48:20Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images [61.36288157482697]
Skin cancer is the most common type of cancer in the United States and is estimated to affect one in five Americans.
Recent advances have demonstrated strong performance on skin cancer detection, as exemplified by state of the art performance in the SIIM-ISIC Melanoma Classification Challenge.
This paper explores leveraging an efficient self-attention structure to detect skin cancer in skin lesion images and introduces a deep neural network design with DC-AC customized for skin cancer detection from skin lesion images.
arXiv Detail & Related papers (2023-11-20T10:45:39Z) - Explainable Artificial Intelligence Architecture for Melanoma Diagnosis
Using Indicator Localization and Self-Supervised Learning [12.013345715187285]
Melanoma is a prevalent lethal type of cancer that is treatable if diagnosed at early stages of development.
Deep learning can be used as a solution to classify skin lesion pictures with a high accuracy.
We develop an explainable deep learning architecture for melanoma diagnosis which generates clinically interpretable visual explanations.
arXiv Detail & Related papers (2023-03-26T03:43:05Z) - A Comprehensive Evaluation Study on Risk Level Classification of
Melanoma by Computer Vision on ISIC 2016-2020 Datasets [0.0]
Melanoma is the cause of 75% of skin cancer deaths.
Better detection of melanoma could have a positive impact on millions of people.
ISIC archive contains the largest publicly available collection of dermatoscopic images of skin lesions.
arXiv Detail & Related papers (2023-02-19T09:58:58Z) - A Comparative Analysis of Transfer Learning-based Techniques for the
Classification of Melanocytic Nevi [0.0]
Unrepaired deoxyribo-nucleic acid (DNA) in skin cells, causes genetic defects in the skin and leads to skin cancer.
Lesion-specific criteria are utilized to distinguish benign skin cancer from malignant melanoma.
Five Transfer Learning-based techniques have the potential to be leveraged for the classification of melanocytic nevi.
arXiv Detail & Related papers (2022-11-20T12:55:42Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - CancerNet-SCa: Tailored Deep Neural Network Designs for Detection of
Skin Cancer from Dermoscopy Images [71.68436132514542]
Skin cancer continues to be the most frequently diagnosed form of cancer in the U.S.
In this study we introduce CancerNet-SCa, a suite of deep neural network designs tailored for the detection of skin cancer from dermoscopy images.
arXiv Detail & Related papers (2020-11-21T02:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.