Ground Awareness in Deep Learning for Large Outdoor Point Cloud Segmentation
- URL: http://arxiv.org/abs/2501.18246v1
- Date: Thu, 30 Jan 2025 10:27:28 GMT
- Title: Ground Awareness in Deep Learning for Large Outdoor Point Cloud Segmentation
- Authors: Kevin Qiu, Dimitri Bulatov, Dorota Iwaszczuk,
- Abstract summary: In dense outdoor point clouds, the receptive field of a machine learning model may be too small to accurately determine the surroundings and context of a point.
By computing Digital Terrain Models (DTMs) from the point clouds, we extract the relative elevation feature, which is the vertical distance from the terrain to a point.
RandLA-Net is employed for efficient semantic segmentation of large-scale point clouds.
- Score: 0.0
- License:
- Abstract: This paper presents an analysis of utilizing elevation data to aid outdoor point cloud semantic segmentation through existing machine-learning networks in remote sensing, specifically in urban, built-up areas. In dense outdoor point clouds, the receptive field of a machine learning model may be too small to accurately determine the surroundings and context of a point. By computing Digital Terrain Models (DTMs) from the point clouds, we extract the relative elevation feature, which is the vertical distance from the terrain to a point. RandLA-Net is employed for efficient semantic segmentation of large-scale point clouds. We assess its performance across three diverse outdoor datasets captured with varying sensor technologies and sensor locations. Integration of relative elevation data leads to consistent performance improvements across all three datasets, most notably in the Hessigheim dataset, with an increase of 3.7 percentage points in average F1 score from 72.35% to 76.01%, by establishing long-range dependencies between ground and objects. We also explore additional local features such as planarity, normal vectors, and 2D features, but their efficacy varied based on the characteristics of the point cloud. Ultimately, this study underscores the important role of the non-local relative elevation feature for semantic segmentation of point clouds in remote sensing applications.
Related papers
- InvariantOODG: Learning Invariant Features of Point Clouds for
Out-of-Distribution Generalization [17.96808017359983]
We propose InvariantOODG, which learns invariability between point clouds with different distributions.
We define a set of learnable anchor points that locate the most useful local regions and two types of transformations to augment the input point clouds.
The experimental results demonstrate the effectiveness of the proposed model on 3D domain generalization benchmarks.
arXiv Detail & Related papers (2024-01-08T09:41:22Z) - Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
We extend data2vec to the point cloud domain and report encouraging results on several downstream tasks.
We propose point2vec, which unleashes the full potential of data2vec-like pre-training on point clouds.
arXiv Detail & Related papers (2023-03-29T10:08:29Z) - Point-Syn2Real: Semi-Supervised Synthetic-to-Real Cross-Domain Learning
for Object Classification in 3D Point Clouds [14.056949618464394]
Object classification using LiDAR 3D point cloud data is critical for modern applications such as autonomous driving.
We propose a semi-supervised cross-domain learning approach that does not rely on manual annotations of point clouds.
We introduce Point-Syn2Real, a new benchmark dataset for cross-domain learning on point clouds.
arXiv Detail & Related papers (2022-10-31T01:53:51Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
We introduce SensatUrban, an urban-scale UAV photogrammetry point cloud dataset consisting of nearly three billion points collected from three UK cities, covering 7.6 km2.
Each point in the dataset has been labelled with fine-grained semantic annotations, resulting in a dataset that is three times the size of the previous existing largest photogrammetric point cloud dataset.
arXiv Detail & Related papers (2022-01-12T14:48:11Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
Real point cloud scenes can intuitively capture complex surroundings in the real world, but due to 3D data's raw nature, it is very challenging for machine perception.
We concentrate on the essential visual task, semantic segmentation, for large-scale point cloud data collected in reality.
By comparing with state-of-the-art networks on three different benchmarks, we demonstrate the effectiveness of our network.
arXiv Detail & Related papers (2021-03-12T04:13:20Z) - Semantic Segmentation on Swiss3DCities: A Benchmark Study on Aerial
Photogrammetric 3D Pointcloud Dataset [67.44497676652173]
We introduce a new outdoor urban 3D pointcloud dataset, covering a total area of 2.7 $km2$, sampled from three Swiss cities.
The dataset is manually annotated for semantic segmentation with per-point labels, and is built using photogrammetry from images acquired by multirotors equipped with high-resolution cameras.
arXiv Detail & Related papers (2020-12-23T21:48:47Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
We present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points.
Our dataset consists of large areas from three UK cities, covering about 7.6 km2 of the city landscape.
We evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results.
arXiv Detail & Related papers (2020-09-07T14:47:07Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z) - MNEW: Multi-domain Neighborhood Embedding and Weighting for Sparse Point
Clouds Segmentation [1.2380933178502298]
We propose MNEW, including multi-domain neighborhood embedding, and attention weighting based on their geometry distance, feature similarity, and neighborhood sparsity.
MNEW achieves the top performance for sparse point clouds, which is important to the application of LiDAR-based automated driving perception.
arXiv Detail & Related papers (2020-04-05T18:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.