論文の概要: Random Feature Representation Boosting
- arxiv url: http://arxiv.org/abs/2501.18283v1
- Date: Thu, 30 Jan 2025 11:46:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:15:28.818083
- Title: Random Feature Representation Boosting
- Title(参考訳): ランダム特徴表現ブースティング
- Authors: Nikita Zozoulenko, Thomas Cass, Lukas Gonon,
- Abstract要約: 本稿では, ブースティング理論を用いて, RFNNを構成する新しい手法であるRandom Feature Representation Boosting(RFRBoost)を紹介する。
RFRBoostは各レイヤでランダムな機能を使用してネットワーク表現の機能的勾配を学習し、RFNNの凸最適化の利点を保ちながら性能を向上させる。
- 参考スコア(独自算出の注目度): 2.389598109913754
- License:
- Abstract: We introduce Random Feature Representation Boosting (RFRBoost), a novel method for constructing deep residual random feature neural networks (RFNNs) using boosting theory. RFRBoost uses random features at each layer to learn the functional gradient of the network representation, enhancing performance while preserving the convex optimization benefits of RFNNs. In the case of MSE loss, we obtain closed-form solutions to greedy layer-wise boosting with random features. For general loss functions, we show that fitting random feature residual blocks reduces to solving a quadratically constrained least squares problem. We demonstrate, through numerical experiments on 91 tabular datasets for regression and classification, that RFRBoost significantly outperforms traditional RFNNs and end-to-end trained MLP ResNets, while offering substantial computational advantages and theoretical guarantees stemming from boosting theory.
- Abstract(参考訳): 本稿では, ブースティング理論を用いて, RFNNを構成する新しい手法であるRandom Feature Representation Boosting(RFRBoost)を紹介する。
RFRBoostは各レイヤでランダムな機能を使用してネットワーク表現の機能的勾配を学習し、RFNNの凸最適化の利点を保ちながら性能を向上させる。
MSE損失の場合、無作為な特徴を持つ層ワイドブースティングのための閉形式解を得る。
一般損失関数の場合、ランダムな特徴残差ブロックが2次制約付き最小二乗問題の解に還元されることが示される。
回帰と分類のための91個の表付きデータセットの数値実験により、RFRBoostは従来のRFNNとエンドツーエンドの訓練されたMLP ResNetよりも大幅に優れ、一方で、ブースティング理論から生じるかなりの計算上の利点と理論的保証を提供する。
関連論文リスト
- LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - Universal Consistency of Wide and Deep ReLU Neural Networks and Minimax
Optimal Convergence Rates for Kolmogorov-Donoho Optimal Function Classes [7.433327915285969]
我々は,ロジスティック損失に基づいて学習した広帯域および深部ReLUニューラルネットワーク分類器の普遍的整合性を証明する。
また、ニューラルネットワークに基づく分類器が最小収束率を達成できる確率尺度のクラスに対して十分な条件を与える。
論文 参考訳(メタデータ) (2024-01-08T23:54:46Z) - Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
学習目標に依存しない特定のマスクウェイトを選択する場合、このカーネルはトレーニングデータ上のゲートReLUネットワークのNTKと等価であることを示す。
この目標への依存の欠如の結果として、NTKはトレーニングセット上の最適MKLカーネルよりもパフォーマンスが良くない。
論文 参考訳(メタデータ) (2023-09-26T17:42:52Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
ニューラルネットワークのような予測器のための新しいトレーニング原理であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決へのそれぞれの貢献に基づいて、個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分を補強し,有害な部分を弱めるという欲求的アプローチを実現する。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Differentiable Neural Networks with RePU Activation: with Applications to Score Estimation and Isotonic Regression [7.450181695527364]
整流パワーユニット(RePU)関数によって活性化される微分可能なニューラルネットワークの特性について検討する。
RePUを活性化したディープニューラルネットワークを用いて,スムーズな関数とその導関数を同時に近似するエラー境界を確立する。
論文 参考訳(メタデータ) (2023-05-01T00:09:48Z) - MF-NeRF: Memory Efficient NeRF with Mixed-Feature Hash Table [62.164549651134465]
MF-NeRFは,Mixed-Featureハッシュテーブルを用いてメモリ効率を向上し,再構成品質を維持しながらトレーニング時間を短縮するメモリ効率の高いNeRFフレームワークである。
最新技術であるInstant-NGP、TensoRF、DVGOによる実験は、MF-NeRFが同じGPUハードウェア上で、同様のあるいはそれ以上のリコンストラクション品質で最速のトレーニング時間を達成できることを示唆している。
論文 参考訳(メタデータ) (2023-04-25T05:44:50Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
ランダム関数リンクニューラルネットワーク(RFLNN)は、深い構造を学習する別の方法を提供する。
本稿では周波数領域の観点からRFLNNの特性について考察する。
本稿では,より優れた性能でBLSネットワークを生成する手法を提案し,ポゾン方程式を解くための効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-04-03T13:25:22Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Feature Flow Regularization: Improving Structured Sparsity in Deep
Neural Networks [12.541769091896624]
プルーニングはディープニューラルネットワーク(DNN)の冗長パラメータを除去するモデル圧縮法である
特徴フロー正則化(FFR)と呼ばれる特徴の進化という新たな視点から, 単純かつ効果的な正則化戦略を提案する。
VGGNets、CIFAR-10/100上のResNets、Tiny ImageNetデータセットによる実験では、FFRが非構造化と構造化の両方の空間性を大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2021-06-05T15:00:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。