Simulation of microstructures and machine learning
- URL: http://arxiv.org/abs/2501.18313v1
- Date: Thu, 30 Jan 2025 12:43:17 GMT
- Title: Simulation of microstructures and machine learning
- Authors: Katja Schladitz, Claudia Redenbach, Tin Barisin, Christian Jung, Natascha Jeziorski, Lovro Bosnar, Juraj Fulir, Petra Gospodnetić,
- Abstract summary: We discuss two use cases: optical quality control in industrial production and segmenting crack structures in 3D images of concrete.
For optical quality control, all defect types have to be trained but are typically not evenly represented in the training data.
Synthetic images, generated based on realizations of geometry models, offer an elegant way out.
- Score: 0.5018974919510384
- License:
- Abstract: Machine learning offers attractive solutions to challenging image processing tasks. Tedious development and parametrization of algorithmic solutions can be replaced by training a convolutional neural network or a random forest with a high potential to generalize. However, machine learning methods rely on huge amounts of representative image data along with a ground truth, usually obtained by manual annotation. Thus, limited availability of training data is a critical bottleneck. We discuss two use cases: optical quality control in industrial production and segmenting crack structures in 3D images of concrete. For optical quality control, all defect types have to be trained but are typically not evenly represented in the training data. Additionally, manual annotation is costly and often inconsistent. It is nearly impossible in the second case: segmentation of crack systems in 3D images of concrete. Synthetic images, generated based on realizations of stochastic geometry models, offer an elegant way out. A wide variety of structure types can be generated. The within structure variation is naturally captured by the stochastic nature of the models and the ground truth is for free. Many new questions arise. In particular, which characteristics of the real image data have to be met to which degree of fidelity.
Related papers
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - Deep Learning of Crystalline Defects from TEM images: A Solution for the
Problem of "Never Enough Training Data" [0.0]
In-situ TEM experiments can provide important insights into how dislocations behave and move.
The analysis of individual video frames can provide useful insights but is limited by the capabilities of automated identification.
In this work, a parametric model for generating synthetic training data for segmentation of dislocations is developed.
arXiv Detail & Related papers (2023-07-12T17:37:46Z) - Improving generalization with synthetic training data for deep learning
based quality inspection [0.0]
supervised deep learning requires a large amount of annotated images for training.
In practice, collecting and annotating such data is costly and laborious.
We show the use of randomly generated synthetic training images can help tackle domain instability.
arXiv Detail & Related papers (2022-02-25T16:51:01Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
arXiv Detail & Related papers (2021-08-30T19:45:07Z) - 3D fluorescence microscopy data synthesis for segmentation and
benchmarking [0.9922927990501083]
Conditional generative adversarial networks can be utilized to generate realistic image data for 3D fluorescence microscopy.
An additional positional conditioning of the cellular structures enables the reconstruction of position-dependent intensity characteristics.
A patch-wise working principle and a subsequent full-size reassemble strategy is used to generate image data of arbitrary size and different organisms.
arXiv Detail & Related papers (2021-07-21T16:08:56Z) - gradSim: Differentiable simulation for system identification and
visuomotor control [66.37288629125996]
We present gradSim, a framework that overcomes the dependence on 3D supervision by leveraging differentiable multiphysics simulation and differentiable rendering.
Our unified graph enables learning in challenging visuomotor control tasks, without relying on state-based (3D) supervision.
arXiv Detail & Related papers (2021-04-06T16:32:01Z) - Counterfactual Generative Networks [59.080843365828756]
We propose to decompose the image generation process into independent causal mechanisms that we train without direct supervision.
By exploiting appropriate inductive biases, these mechanisms disentangle object shape, object texture, and background.
We show that the counterfactual images can improve out-of-distribution with a marginal drop in performance on the original classification task.
arXiv Detail & Related papers (2021-01-15T10:23:12Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.