Contextual Online Decision Making with Infinite-Dimensional Functional Regression
- URL: http://arxiv.org/abs/2501.18359v1
- Date: Thu, 30 Jan 2025 14:05:20 GMT
- Title: Contextual Online Decision Making with Infinite-Dimensional Functional Regression
- Authors: Haichen Hu, Rui Ai, Stephen Bates, David Simchi-Levi,
- Abstract summary: Contextual sequential decision-making problems play a crucial role in machine learning.
We provide a universal admissible algorithm framework for dealing with all kinds of contextual online decision-making problems.
- Score: 19.06054415343443
- License:
- Abstract: Contextual sequential decision-making problems play a crucial role in machine learning, encompassing a wide range of downstream applications such as bandits, sequential hypothesis testing and online risk control. These applications often require different statistical measures, including expectation, variance and quantiles. In this paper, we provide a universal admissible algorithm framework for dealing with all kinds of contextual online decision-making problems that directly learns the whole underlying unknown distribution instead of focusing on individual statistics. This is much more difficult because the dimension of the regression is uncountably infinite, and any existing linear contextual bandits algorithm will result in infinite regret. To overcome this issue, we propose an efficient infinite-dimensional functional regression oracle for contextual cumulative distribution functions (CDFs), where each data point is modeled as a combination of context-dependent CDF basis functions. Our analysis reveals that the decay rate of the eigenvalue sequence of the design integral operator governs the regression error rate and, consequently, the utility regret rate. Specifically, when the eigenvalue sequence exhibits a polynomial decay of order $\frac{1}{\gamma}\ge 1$, the utility regret is bounded by $\tilde{\mathcal{O}}\Big(T^{\frac{3\gamma+2}{2(\gamma+2)}}\Big)$. By setting $\gamma=0$, this recovers the existing optimal regret rate for contextual bandits with finite-dimensional regression and is optimal under a stronger exponential decay assumption. Additionally, we provide a numerical method to compute the eigenvalue sequence of the integral operator, enabling the practical implementation of our framework.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Performative Reinforcement Learning with Linear Markov Decision Process [14.75815792682734]
We study the setting of emphperformative reinforcement learning where the deployed policy affects both the reward and the transition of the underlying Markov decision process.
We generalize the results to emphlinear Markov decision processes which is the primary theoretical model of large-scale MDPs.
arXiv Detail & Related papers (2024-11-07T23:04:48Z) - Refined Risk Bounds for Unbounded Losses via Transductive Priors [58.967816314671296]
We revisit the sequential variants of linear regression with the squared loss, classification problems with hinge loss, and logistic regression.
Our key tools are based on the exponential weights algorithm with carefully chosen transductive priors.
arXiv Detail & Related papers (2024-10-29T00:01:04Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Adversarial Contextual Bandits Go Kernelized [21.007410990554522]
We study a generalization of the problem of online learning in adversarial linear contextual bandits by incorporating loss functions that belong to a Hilbert kernel space.
We propose a new optimistically biased estimator for the loss functions and reproducing near-optimal regret guarantees.
arXiv Detail & Related papers (2023-10-02T19:59:39Z) - Functional Linear Regression of Cumulative Distribution Functions [20.96177061945288]
We propose functional ridge-regression-based estimation methods that estimate CDFs accurately everywhere.
We show estimation error upper bounds of $widetilde O(sqrtd/n)$ for fixed design, random design, and adversarial context cases.
We formalize infinite dimensional models where the parameter space is an infinite dimensional Hilbert space, and establish a self-normalized estimation error upper bound for this setting.
arXiv Detail & Related papers (2022-05-28T23:59:50Z) - Localization, Convexity, and Star Aggregation [0.0]
Offset Rademacher complexities have been shown to imply sharp, linear-dependent upper bounds for the square loss.
We show that in the statistical setting, the offset bound can be generalized to any loss satisfying certain uniform convexity.
arXiv Detail & Related papers (2021-05-19T00:47:59Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
We derive the regret upper bounds on the classes of Sobolev spaces $W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$.
The upper bounds are supported by the minimax regret analysis, which reveals that in the cases $beta> fracd2$ or $p=infty$ these rates are (essentially) optimal.
arXiv Detail & Related papers (2021-02-06T15:05:14Z) - Online and Distribution-Free Robustness: Regression and Contextual
Bandits with Huber Contamination [29.85468294601847]
We revisit two classic high-dimensional online learning problems, namely linear regression and contextual bandits.
We show that our algorithms succeed where conventional methods fail.
arXiv Detail & Related papers (2020-10-08T17:59:05Z) - Approximation Schemes for ReLU Regression [80.33702497406632]
We consider the fundamental problem of ReLU regression.
The goal is to output the best fitting ReLU with respect to square loss given to draws from some unknown distribution.
arXiv Detail & Related papers (2020-05-26T16:26:17Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.