Performative Reinforcement Learning with Linear Markov Decision Process
- URL: http://arxiv.org/abs/2411.05234v1
- Date: Thu, 07 Nov 2024 23:04:48 GMT
- Title: Performative Reinforcement Learning with Linear Markov Decision Process
- Authors: Debmalya Mandal, Goran Radanovic,
- Abstract summary: We study the setting of emphperformative reinforcement learning where the deployed policy affects both the reward and the transition of the underlying Markov decision process.
We generalize the results to emphlinear Markov decision processes which is the primary theoretical model of large-scale MDPs.
- Score: 14.75815792682734
- License:
- Abstract: We study the setting of \emph{performative reinforcement learning} where the deployed policy affects both the reward, and the transition of the underlying Markov decision process. Prior work~\parencite{MTR23} has addressed this problem under the tabular setting and established last-iterate convergence of repeated retraining with iteration complexity explicitly depending on the number of states. In this work, we generalize the results to \emph{linear Markov decision processes} which is the primary theoretical model of large-scale MDPs. The main challenge with linear MDP is that the regularized objective is no longer strongly convex and we want a bound that scales with the dimension of the features, rather than states which can be infinite. Our first result shows that repeatedly optimizing a regularized objective converges to a \emph{performatively stable policy}. In the absence of strong convexity, our analysis leverages a new recurrence relation that uses a specific linear combination of optimal dual solutions for proving convergence. We then tackle the finite sample setting where the learner has access to a set of trajectories drawn from the current policy. We consider a reparametrized version of the primal problem, and construct an empirical Lagrangian which is to be optimized from the samples. We show that, under a \emph{bounded coverage} condition, repeatedly solving a saddle point of this empirical Lagrangian converges to a performatively stable solution, and also construct a primal-dual algorithm that solves the empirical Lagrangian efficiently. Finally, we show several applications of the general framework of performative RL including multi-agent systems.
Related papers
- Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Formal guarantees for heuristic optimization algorithms used in machine
learning [6.978625807687497]
Gradient Descent (SGD) and its variants have become the dominant methods in the large-scale optimization machine learning (ML) problems.
We provide formal guarantees of a few convex optimization methods and proposing improved algorithms.
arXiv Detail & Related papers (2022-07-31T19:41:22Z) - Finite-Time Complexity of Online Primal-Dual Natural Actor-Critic Algorithm for Constrained Markov Decision Processes [13.908826484332282]
We study an online primal-dual actor-critic method to solve a discounted cost constrained Markov decision process problem.
This paper is the first to study the finite-time complexity of an online primal-dual actor-critic method for solving a CMDP problem.
arXiv Detail & Related papers (2021-10-21T18:05:40Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
We investigate the active pure exploration problem in Markov Decision Processes.
Agent sequentially selects actions and, from the resulting system trajectory, aims at the best as fast as possible.
arXiv Detail & Related papers (2021-06-05T09:16:28Z) - A Retrospective Approximation Approach for Smooth Stochastic
Optimization [0.2867517731896504]
Gradient (SG) is the defactorandom iterative technique to solve optimization (SO) problems with a smooth (non-fimation) objective $imation.
arXiv Detail & Related papers (2021-03-07T16:29:36Z) - Posterior-Aided Regularization for Likelihood-Free Inference [23.708122045184698]
Posterior-Aided Regularization (PAR) is applicable to learning the density estimator, regardless of the model structure.
We provide a unified estimation method of PAR to estimate both reverse KL term and mutual information term with a single neural network.
arXiv Detail & Related papers (2021-02-15T16:59:30Z) - Upper Confidence Primal-Dual Reinforcement Learning for CMDP with
Adversarial Loss [145.54544979467872]
We consider online learning for episodically constrained Markov decision processes (CMDPs)
We propose a new emphupper confidence primal-dual algorithm, which only requires the trajectories sampled from the transition model.
Our analysis incorporates a new high-probability drift analysis of Lagrange multiplier processes into the celebrated regret analysis of upper confidence reinforcement learning.
arXiv Detail & Related papers (2020-03-02T05:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.