Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation
- URL: http://arxiv.org/abs/2501.18416v1
- Date: Thu, 30 Jan 2025 15:14:55 GMT
- Title: Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation
- Authors: Youngjoon Lee, Taehyun Park, Yunho Lee, Jinu Gong, Joonhyuk Kang,
- Abstract summary: Federated Learning (FL) is increasingly being adopted in military collaborations to develop Large Language Models (LLMs)
prompt injection attacks-malicious manipulations of input prompts-pose new threats that may undermine operational security, disrupt decision-making, and erode trust among allies.
We propose a human-AI collaborative framework that introduces both technical and policy countermeasures.
- Score: 3.0175628677371935
- License:
- Abstract: Federated Learning (FL) is increasingly being adopted in military collaborations to develop Large Language Models (LLMs) while preserving data sovereignty. However, prompt injection attacks-malicious manipulations of input prompts-pose new threats that may undermine operational security, disrupt decision-making, and erode trust among allies. This perspective paper highlights four potential vulnerabilities in federated military LLMs: secret data leakage, free-rider exploitation, system disruption, and misinformation spread. To address these potential risks, we propose a human-AI collaborative framework that introduces both technical and policy countermeasures. On the technical side, our framework uses red/blue team wargaming and quality assurance to detect and mitigate adversarial behaviors of shared LLM weights. On the policy side, it promotes joint AI-human policy development and verification of security protocols. Our findings will guide future research and emphasize proactive strategies for emerging military contexts.
Related papers
- Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
AI agents, powered by large language models (LLMs), have transformed human-computer interactions by enabling seamless, natural, and context-aware communication.
This paper investigates a critical vulnerability: adversarial attacks targeting the LLM core within AI agents.
arXiv Detail & Related papers (2024-12-05T18:38:30Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation.
Despite these advancements, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks.
This review analyzes the state of research on these vulnerabilities and presents available defense strategies.
arXiv Detail & Related papers (2024-10-20T00:00:56Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - On Large Language Models in National Security Applications [2.7624021966289605]
The overwhelming success of GPT-4 in early 2023 highlighted the transformative potential of large language models (LLMs) across various sectors, including national security.
This article explores the implications of LLM integration within national security contexts, analyzing their potential to revolutionize information processing, decision-making, and operational efficiency.
arXiv Detail & Related papers (2024-07-03T18:53:22Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Large language models in 6G security: challenges and opportunities [5.073128025996496]
We focus on the security aspects of Large Language Models (LLMs) from the viewpoint of potential adversaries.
This will include the development of a comprehensive threat taxonomy, categorizing various adversary behaviors.
Also, our research will concentrate on how LLMs can be integrated into cybersecurity efforts by defense teams, also known as blue teams.
arXiv Detail & Related papers (2024-03-18T20:39:34Z) - SUB-PLAY: Adversarial Policies against Partially Observed Multi-Agent Reinforcement Learning Systems [40.91476827978885]
Attackers can rapidly exploit the victim's vulnerabilities, generating adversarial policies that result in the failure of specific tasks.
We propose a novel black-box attack ( SUB-PLAY) that incorporates the concept of constructing multiple subgames to mitigate the impact of partial observability.
We evaluate three potential defenses aimed at exploring ways to mitigate security threats posed by adversarial policies.
arXiv Detail & Related papers (2024-02-06T06:18:16Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Certifiably Robust Policy Learning against Adversarial Communication in
Multi-agent Systems [51.6210785955659]
Communication is important in many multi-agent reinforcement learning (MARL) problems for agents to share information and make good decisions.
However, when deploying trained communicative agents in a real-world application where noise and potential attackers exist, the safety of communication-based policies becomes a severe issue that is underexplored.
In this work, we consider an environment with $N$ agents, where the attacker may arbitrarily change the communication from any $CfracN-12$ agents to a victim agent.
arXiv Detail & Related papers (2022-06-21T07:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.