SANA 1.5: Efficient Scaling of Training-Time and Inference-Time Compute in Linear Diffusion Transformer
- URL: http://arxiv.org/abs/2501.18427v2
- Date: Wed, 05 Feb 2025 06:23:36 GMT
- Title: SANA 1.5: Efficient Scaling of Training-Time and Inference-Time Compute in Linear Diffusion Transformer
- Authors: Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Yujun Lin, Zhekai Zhang, Muyang Li, Junyu Chen, Han Cai, Bingchen Liu, Daquan Zhou, Song Han,
- Abstract summary: This paper presents SANA-1.5, a linear Diffusion Transformer for efficient scaling in text-to-image generation.
We introduce three key innovations: Efficient Training Scaling, Model Depth Pruning, and Inference-time Scaling.
Through these strategies, SANA-1.5 achieves a text computation-image alignment score of 0.72 on GenEval, which can be further improved to 0.80 through inference scaling.
- Score: 50.04304674778762
- License:
- Abstract: This paper presents SANA-1.5, a linear Diffusion Transformer for efficient scaling in text-to-image generation. Building upon SANA-1.0, we introduce three key innovations: (1) Efficient Training Scaling: A depth-growth paradigm that enables scaling from 1.6B to 4.8B parameters with significantly reduced computational resources, combined with a memory-efficient 8-bit optimizer. (2) Model Depth Pruning: A block importance analysis technique for efficient model compression to arbitrary sizes with minimal quality loss. (3) Inference-time Scaling: A repeated sampling strategy that trades computation for model capacity, enabling smaller models to match larger model quality at inference time. Through these strategies, SANA-1.5 achieves a text-image alignment score of 0.72 on GenEval, which can be further improved to 0.80 through inference scaling, establishing a new SoTA on GenEval benchmark. These innovations enable efficient model scaling across different compute budgets while maintaining high quality, making high-quality image generation more accessible.
Related papers
- S*: Test Time Scaling for Code Generation [55.11863577956177]
We propose S*, the first hybrid test-time scaling framework for code generation.
S* substantially improves the coverage and selection accuracy of generated code.
arXiv Detail & Related papers (2025-02-20T09:18:53Z) - Building Efficient Lightweight CNN Models [0.0]
Convolutional Neural Networks (CNNs) are pivotal in image classification tasks due to their robust feature extraction capabilities.
This paper introduces a methodology to construct lightweight CNNs while maintaining competitive accuracy.
The proposed model achieved a state-of-the-art accuracy of 99% on the handwritten digit MNIST and 89% on fashion MNIST, with only 14,862 parameters and a model size of 0.17 MB.
arXiv Detail & Related papers (2025-01-26T14:39:01Z) - Collaborative Decoding Makes Visual Auto-Regressive Modeling Efficient [52.96232442322824]
Collaborative Decoding (CoDe) is a novel efficient decoding strategy tailored for the Visual Auto-Regressive ( VAR) framework.
CoDe capitalizes on two critical observations: the substantially reduced parameter demands at larger scales and the exclusive generation patterns across different scales.
CoDe achieves a 1.7x speedup, slashes memory usage by around 50%, and preserves image quality with only a negligible FID increase from 1.95 to 1.98.
arXiv Detail & Related papers (2024-11-26T15:13:15Z) - Comb, Prune, Distill: Towards Unified Pruning for Vision Model Compression [24.119415458653616]
We propose a novel unified pruning framework Comb, Prune, Distill (CPD) to address both model-agnostic and task-agnostic concerns simultaneously.
Our framework employs a combing step to resolve hierarchical layer-wise dependency issues, enabling architecture independence.
In image classification we achieve a speedup of up to x4.3 with a accuracy loss of 1.8% and in semantic segmentation up to x1.89 with a 5.1% loss in mIoU.
arXiv Detail & Related papers (2024-08-06T09:02:31Z) - Scaling Up 3D Kernels with Bayesian Frequency Re-parameterization for
Medical Image Segmentation [25.62587471067468]
RepUX-Net is a pure CNN architecture with a simple large kernel block design.
Inspired by the spatial frequency in the human visual system, we extend to vary the kernel convergence into element-wise setting.
arXiv Detail & Related papers (2023-03-10T08:38:34Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - Memory and Computation-Efficient Kernel SVM via Binary Embedding and
Ternary Model Coefficients [18.52747917850984]
Kernel approximation is widely used to scale up kernel SVM training and prediction.
Memory and computation costs of kernel approximation models are still too high if we want to deploy them on memory-limited devices.
We propose a novel memory and computation-efficient kernel SVM model by using both binary embedding and binary model coefficients.
arXiv Detail & Related papers (2020-10-06T09:41:54Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
We propose a strategy that combines redundant recomputing and out-of-core methods.
We achieve an average of 1.52x speedup in six different models over the state-of-the-art out-of-core methods.
Our data parallel out-of-core solution can outperform complex hybrid model parallelism in training large models, e.g. Megatron-LM and Turning-NLG.
arXiv Detail & Related papers (2020-08-26T07:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.