Non-Markovianity of subsystem dynamics in isolated quantum many-body systems
- URL: http://arxiv.org/abs/2501.18476v2
- Date: Tue, 17 Jun 2025 09:03:51 GMT
- Title: Non-Markovianity of subsystem dynamics in isolated quantum many-body systems
- Authors: Aditya Banerjee,
- Abstract summary: We numerically probe the behaviour of the quantum distances between $textittemporally-separated$ states of small subsystems.<n>We reveal the telltale signatures of (non-)Markovianity of the dynamics of subsystems of an isolated quantum spin system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is believed that an isolated and far-from-equilibrium quantum many-body system should try to attain equilibrium via a mechanism whereby any given subsystem acts as an open quantum system that is coupled to an environment, which is the complementary part of the full system, and undergoes a complicated equilibration process such that all the subsystems in the long-time limit attain equilibrium states compatible with the global equilibrium state. This picture begs the question whether the dynamics of any given subsystem is Markovian (monotonic loss of information and memory) or non-Markovian. In this work, by numerically probing the dynamical behaviour of the quantum distances between $\textit{temporally-separated}$ states of small subsystems, we reveal the telltale signatures of (non-)Markovianity of the dynamics of subsystems of an isolated quantum spin system brought in the far-from-equilibrium regime, exemplified with the mixed-field Ising spin chain quenched between parameter regimes deep inside its magnetically ordered and disordered regimes. Additionally, remarkably systematic behaviour is seen in a measure of classical distances between the quantum states of the considered subsystems. These features strongly depend on the direction of quenching in the parameter space, with paramagnetic-to-ferromagnetic quenches offering considerably stronger signatures of subsystem non-Markovianity, for which we offer heuristic arguments.
Related papers
- Quantum scarring enhances non-Markovianity of subsystem dynamics [0.0]
We show that the presence of quantum scars is a microscopic ingredient that enables and enhances non-Markovianity of the dynamics of subsystems.<n>This sheds new light on the dynamical memories associated with quantum scarring.
arXiv Detail & Related papers (2025-07-31T17:44:01Z) - Unveiling coherent dynamics in non-Markovian open quantum systems: exact expression and recursive perturbation expansion [44.99833362998488]
We introduce a systematic framework to derive the effective Hamiltonian governing the coherent dynamics of non-Markovian open quantum systems.<n>Applying our framework to paradigmatic spin systems, we reveal how environmental correlations influence energy shifts and eigenbasis rotations.
arXiv Detail & Related papers (2025-06-04T15:55:22Z) - Anomalous transport in U(1)-symmetric quantum circuits [41.94295877935867]
Investigation of discrete-time transport in a generic U(1)-symmetric disordered model tuned across an array of different dynamical regimes.
We develop an aggregate quantity, a circular statistical moment, which is a simple function of the magnetization profile.
From this quantity we extract transport exponents, revealing behaviors across the phase diagram consistent with localized, diffusive, and - most interestingly for a disordered system - superdiffusive regimes.
arXiv Detail & Related papers (2024-11-21T17:56:26Z) - System Symmetry and the Classification of Out-of-Time-Ordered Correlator Dynamics in Quantum Chaos [1.534667887016089]
We study the universality of out-of-time-ordered correlator (OTOC) dynamics in quantum chaotic systems.
We show that ensemble-averaged OTOC dynamics exhibit distinct universal behaviors depending on system symmetry.
arXiv Detail & Related papers (2024-10-07T03:03:09Z) - Observing Time-Dependent Energy Level Renormalisation in an Ultrastrongly Coupled Open System [37.69303106863453]
We show how strong coupling and memory effects influence the energy levels of open quantum systems.
Measurements reveal a time-dependent shift in the system's energy levels of up to 15% of the bare system frequency.
Our findings provide direct evidence of dynamic energy level renormalisation in strongly coupled open quantum systems.
arXiv Detail & Related papers (2024-08-28T16:40:55Z) - Stability of Quantum Systems beyond Canonical Typicality [9.632520418947305]
We analyze the statistical distribution of a quantum system coupled strongly with a heat bath.
The stability of system distribution is largely affected by the system--bath interaction strength.
arXiv Detail & Related papers (2024-07-22T02:59:04Z) - Simulating the dynamics of large many-body quantum systems with Schrödinger-Feynman techniques [0.0]
This paper highlights hybrid Schr"odinger-Feynman techniques as an innovative approach to efficiently simulate certain aspects of many-body quantum dynamics on classical computers.
With the here proposed Schr"odinger-Feynman method, we are able to simulate the pure-state survival probability in systems significantly larger than accessible by standard sparse-matrix techniques.
arXiv Detail & Related papers (2024-03-28T22:20:23Z) - Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Quantum critical behaviors and decoherence of weakly coupled quantum
Ising models within an isolated global system [0.0]
We study the dependence of its quantum correlations and decoherence rate on the state of the weakly-coupled complementary part E.
In particular, different scaling behaviors, depending on the state of E, are observed for the decoherence of the subsystem S.
arXiv Detail & Related papers (2022-09-14T09:54:02Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Trajectories without quantum uncertainties in composite systems with
disparate energy spectra [0.0]
measurement-induced quantum back action can be eliminated in composite systems by engineering quantum-mechanics-free subspaces.
The utility of the concept has been limited by the requirement of close proximity of the resonance frequencies of the system of interest and the negative-mass reference system.
Here we propose a general approach which overcomes these limitations by employing periodic modulation of the driving fields.
arXiv Detail & Related papers (2021-11-04T09:12:28Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.