論文の概要: SimpleDepthPose: Fast and Reliable Human Pose Estimation with RGBD-Images
- arxiv url: http://arxiv.org/abs/2501.18478v1
- Date: Thu, 30 Jan 2025 16:51:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:14:55.249458
- Title: SimpleDepthPose: Fast and Reliable Human Pose Estimation with RGBD-Images
- Title(参考訳): 単純DepthPose:RGBD画像を用いた高速で信頼性の高い人文推定
- Authors: Daniel Bermuth, Alexander Poeppel, Wolfgang Reif,
- Abstract要約: 本稿では,深度情報を組み込んだ多視点多人数ポーズ推定アルゴリズムを提案する。
広範に評価した結果,提案アルゴリズムは未知のデータセットをうまく一般化するだけでなく,高速な実行性能を示すとともに,異なるキーポイントにも適応可能であることがわかった。
- 参考スコア(独自算出の注目度): 45.085830389820956
- License:
- Abstract: In the rapidly advancing domain of computer vision, accurately estimating the poses of multiple individuals from various viewpoints remains a significant challenge, especially when reliability is a key requirement. This paper introduces a novel algorithm that excels in multi-view, multi-person pose estimation by incorporating depth information. An extensive evaluation demonstrates that the proposed algorithm not only generalizes well to unseen datasets, and shows a fast runtime performance, but also is adaptable to different keypoints. To support further research, all of the work is publicly accessible.
- Abstract(参考訳): コンピュータビジョンの急速に進歩する領域では、特に信頼性が重要な要件である場合、様々な視点から複数の個人のポーズを正確に推定することが重要な課題である。
本稿では,深度情報を組み込んだ多視点多人数ポーズ推定アルゴリズムを提案する。
広範に評価した結果,提案アルゴリズムは未知のデータセットをうまく一般化するだけでなく,高速な実行性能を示すとともに,異なるキーポイントにも適応可能であることがわかった。
さらなる研究を支援するため、全ての研究が一般に公開されている。
関連論文リスト
- VoxelKeypointFusion: Generalizable Multi-View Multi-Person Pose Estimation [45.085830389820956]
本研究では,多視点多人数ポーズ推定器のデータセットに対する一般化能力の評価を行う。
また、深度情報を利用した改良も検討している。
この新しいアプローチは、未知のデータセットだけでなく、異なるキーポイントにもうまく一般化できるため、最初のマルチパーソン全体の推定器が提示される。
論文 参考訳(メタデータ) (2024-10-24T13:28:40Z) - You Only Learn One Query: Learning Unified Human Query for Single-Stage Multi-Person Multi-Task Human-Centric Perception [37.667147915777534]
人間中心の知覚は、コンピュータビジョンの長年の問題である。
本稿では,一段階多人数マルチタスク人間中心認識(HCP)のための統合多目的フレームワーク(HQNet)を提案する。
Human Queryは、個人のための複雑なインスタンスレベルの機能をキャプチャし、複雑なマルチパーソンシナリオを分離する。
論文 参考訳(メタデータ) (2023-12-09T10:36:43Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
我々は、自動運転車のビジョンの文脈において、Deep Semanticの最も関連性があり最近の進歩について調査を行う。
私たちの主な目的は、それぞれの視点で直面している主要な方法、利点、制限、結果、課題に関する包括的な議論を提供することです。
論文 参考訳(メタデータ) (2023-03-08T01:29:55Z) - Snipper: A Spatiotemporal Transformer for Simultaneous Multi-Person 3D
Pose Estimation Tracking and Forecasting on a Video Snippet [24.852728097115744]
RGBからの多人数ポーズ理解には、ポーズ推定、トラッキング、動き予測という3つの複雑なタスクが含まれる。
既存の作業の多くは、ひとつのタスクに集中するか、複数のタスクを別々に解決するためのマルチステージアプローチを採用するかのどちらかです。
Snipperは、複数の人物によるポーズ推定、追跡、動き予測を同時に行うための統合されたフレームワークである。
論文 参考訳(メタデータ) (2022-07-09T18:42:14Z) - Multi-View Depth Estimation by Fusing Single-View Depth Probability with
Multi-View Geometry [25.003116148843525]
多視点幾何を用いて一視点深度確率を融合するフレームワークであるMaGNetを提案する。
MaGNet は ScanNet, 7-Scenes, KITTI で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-12-15T14:56:53Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
マルチデータセット特徴一般化ネットワーク(MMFA-AAE)を提案する。
複数のラベル付きデータセットから普遍的なドメイン不変の特徴表現を学習し、それを見えないカメラシステムに一般化することができる。
また、最先端の教師付き手法や教師なしのドメイン適応手法を大きなマージンで超えている。
論文 参考訳(メタデータ) (2020-11-25T08:03:15Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
プレゼンテーションアタックは、バイオメトリックなモダリティの大部分に大きな課題をもたらす。
本稿では,汎用的な深層学習に基づくプレゼンテーション攻撃検出ネットワークであるMVANetを提案する。
これはハイブリッドアルゴリズムの単純さと成功、あるいは複数の検出ネットワークの融合にインスパイアされている。
論文 参考訳(メタデータ) (2020-10-25T22:42:27Z) - Deep Learning for Person Re-identification: A Survey and Outlook [233.36948173686602]
人物再識別(Re-ID)は、複数の重複しないカメラを通して興味ある人物を検索することを目的としている。
人物のRe-IDシステム開発に関わるコンポーネントを分離することにより、それをクローズドワールドとオープンワールドのセッティングに分類する。
論文 参考訳(メタデータ) (2020-01-13T12:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。