論文の概要: Snipper: A Spatiotemporal Transformer for Simultaneous Multi-Person 3D
Pose Estimation Tracking and Forecasting on a Video Snippet
- arxiv url: http://arxiv.org/abs/2207.04320v3
- Date: Tue, 12 Sep 2023 21:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 18:40:23.028953
- Title: Snipper: A Spatiotemporal Transformer for Simultaneous Multi-Person 3D
Pose Estimation Tracking and Forecasting on a Video Snippet
- Title(参考訳): Snipper: ビデオスニペットにおける同時多人数3次元姿勢推定と予測のための時空間変換器
- Authors: Shihao Zou, Yuanlu Xu, Chao Li, Lingni Ma, Li Cheng, Minh Vo
- Abstract要約: RGBからの多人数ポーズ理解には、ポーズ推定、トラッキング、動き予測という3つの複雑なタスクが含まれる。
既存の作業の多くは、ひとつのタスクに集中するか、複数のタスクを別々に解決するためのマルチステージアプローチを採用するかのどちらかです。
Snipperは、複数の人物によるポーズ推定、追跡、動き予測を同時に行うための統合されたフレームワークである。
- 参考スコア(独自算出の注目度): 24.852728097115744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-person pose understanding from RGB videos involves three complex tasks:
pose estimation, tracking and motion forecasting. Intuitively, accurate
multi-person pose estimation facilitates robust tracking, and robust tracking
builds crucial history for correct motion forecasting. Most existing works
either focus on a single task or employ multi-stage approaches to solving
multiple tasks separately, which tends to make sub-optimal decision at each
stage and also fail to exploit correlations among the three tasks. In this
paper, we propose Snipper, a unified framework to perform multi-person 3D pose
estimation, tracking, and motion forecasting simultaneously in a single stage.
We propose an efficient yet powerful deformable attention mechanism to
aggregate spatiotemporal information from the video snippet. Building upon this
deformable attention, a video transformer is learned to encode the
spatiotemporal features from the multi-frame snippet and to decode informative
pose features for multi-person pose queries. Finally, these pose queries are
regressed to predict multi-person pose trajectories and future motions in a
single shot. In the experiments, we show the effectiveness of Snipper on three
challenging public datasets where our generic model rivals specialized
state-of-art baselines for pose estimation, tracking, and forecasting.
- Abstract(参考訳): RGBビデオからの多人数ポーズ理解には、ポーズ推定、トラッキング、モーション予測という3つの複雑なタスクが含まれる。
直感的には、正確な複数人のポーズ推定はロバストなトラッキングを促進し、ロバストなトラッキングは正しい動き予測に重要な履歴を構築する。
既存の作業の多くは1つのタスクに集中するか、複数のタスクを個別に解決するためのマルチステージアプローチを採用するかのどちらかだ。
本稿では,複数の人物によるポーズ推定,トラッキング,動き予測を同時に行うための統合フレームワークであるSnipperを提案する。
ビデオスニペットから時空間情報を集約する,効率的かつ強力に変形可能なアテンション機構を提案する。
この変形可能な注意に基づいて、ビデオトランスフォーマは、マルチフレームスニペットから時空間的特徴をエンコードし、多人数のポーズクエリのための情報的ポーズ特徴を復号するために学習される。
最後に、これらのポーズクエリを回帰して、複数人のポーズトラジェクトリと将来の動きを1ショットで予測する。
実験では,ポーズ推定,追跡,予測のための最先端ベースラインに匹敵する3つの難解なパブリックデータセットに対して,スナイパーの有効性を示す。
関連論文リスト
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
我々は動的シーンから時間ステップごとの幾何を直接推定する新しい幾何学的アプローチであるMotion DUSt3R(MonST3R)を提案する。
各タイムステップのポイントマップを単純に推定することで、静的シーンにのみ使用されるDUST3Rの表現を動的シーンに効果的に適応させることができる。
我々は、問題を微調整タスクとしてポーズし、いくつかの適切なデータセットを特定し、この制限されたデータ上でモデルを戦略的に訓練することで、驚くほどモデルを動的に扱えることを示す。
論文 参考訳(メタデータ) (2024-10-04T18:00:07Z) - StreamMOTP: Streaming and Unified Framework for Joint 3D Multi-Object Tracking and Trajectory Prediction [22.29257945966914]
我々は3次元多目的追跡・軌道予測(StreamMOTP)のためのストリーミング統合フレームワークを提案する。
ストリーミング方式でモデルを構築し、メモリバンクを利用して、追跡対象の長期潜伏機能をより効果的に保存し、活用する。
また,予測トラジェクタの品質と一貫性を2ストリーム予測器で改善する。
論文 参考訳(メタデータ) (2024-06-28T11:35:35Z) - DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
提案手法は,2つのタスクの結合を軌道修正問題として定式化する。
この統合タスクに対処するために、オブジェクトの存在, ポーズ, マルチモーダルな将来の振る舞いを推測する精細化変換器を設計する。
実験では、我々のモデルはArgoverse 2 Sensor and Openデータセットの最先端性よりも優れています。
論文 参考訳(メタデータ) (2024-06-06T18:12:04Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
任意の軌道をマスク入力として処理する統一軌道生成モデルUniTrajを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを導入する。
バスケットボール-U,サッカー-U,サッカー-Uの3つの実用的なスポーツゲームデータセットをベンチマークして評価を行った。
論文 参考訳(メタデータ) (2024-05-27T22:15:23Z) - The MI-Motion Dataset and Benchmark for 3D Multi-Person Motion
Prediction [13.177817435234449]
3D多対人動作予測は、個人行動や人との相互作用をモデル化する難しいタスクである。
本稿では,モーションキャプチャシステムによって収集された複数の個体の骨格配列を含むMI-Motionデータセットを提案する。
データセットには、人々のスケルトンポーズを対話する167kフレームが含まれており、5つの異なるアクティビティシーンに分類される。
論文 参考訳(メタデータ) (2023-06-23T15:38:22Z) - Mutual Information-Based Temporal Difference Learning for Human Pose
Estimation in Video [16.32910684198013]
本稿では,動的コンテキストをモデル化するために,フレーム間の時間差を利用した新しいヒューマンポーズ推定フレームワークを提案する。
具体的には、多段階差分を条件とした多段階絡み合い学習シーケンスを設計し、情報的動作表現シーケンスを導出する。
以下は、HiEveベンチマークで、複合イベントチャレンジにおけるクラウドポーズ推定において、第1位にランク付けします。
論文 参考訳(メタデータ) (2023-03-15T09:29:03Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - Kinematic-aware Hierarchical Attention Network for Human Pose Estimation
in Videos [17.831839654593452]
従来の人間のポーズ推定手法は, 連続するフレームの特徴を活用することで, 有望な結果を示した。
ほとんどのアプローチでは、ジッターに精度を妥協し、人間の動きの時間的側面を理解しない。
キネマティックなキーポイント機能を利用するアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-11-29T01:46:11Z) - BEVerse: Unified Perception and Prediction in Birds-Eye-View for
Vision-Centric Autonomous Driving [92.05963633802979]
マルチカメラシステムに基づく3次元認識と予測のための統合フレームワークであるBEVerseを提案する。
マルチタスクBEVerseは3次元オブジェクト検出,セマンティックマップ構築,動き予測において単一タスク法より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-19T17:55:35Z) - Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo [71.59494156155309]
既存のマルチビュー3Dポーズ推定手法は、複数のカメラビューからグループ2Dポーズ検出に対するクロスビュー対応を明確に確立する。
平面スイープステレオに基づくマルチビュー3Dポーズ推定手法を提案し、クロスビュー融合と3Dポーズ再構築を1ショットで共同で解決します。
論文 参考訳(メタデータ) (2021-04-06T03:49:35Z) - Deep Reinforcement Learning for Active Human Pose Estimation [35.229529080763925]
完全トレーニング可能な深層強化学習型アクティブポーズ推定アーキテクチャであるPose-DRLを紹介する。
提案モデルでは,強い多視点ベースラインと比較して,より正確なポーズ推定を行う視点を選択することを学習している。
論文 参考訳(メタデータ) (2020-01-07T13:35:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。