Digital Quantum Simulations of the Non-Resonant Open Tavis-Cummings Model
- URL: http://arxiv.org/abs/2501.18522v1
- Date: Thu, 30 Jan 2025 17:39:10 GMT
- Title: Digital Quantum Simulations of the Non-Resonant Open Tavis-Cummings Model
- Authors: Aidan N. Sims, Dhrumil Patel, Aby Philip, Alex H. Rubin, Rahul Bandyopadhyay, Marina Radulaski, Mark M. Wilde,
- Abstract summary: As $N$ increases, it becomes harder to simulate the open Tavis-Cummings model using traditional methods.
We implement two quantum algorithms for simulating the dynamics of this model in the inhomogenous, non-resonant regime.
One of these algorithms is designing the sampling-based wave matrix Lindbladization algorithm.
- Score: 14.100929535767268
- License:
- Abstract: The open Tavis-Cummings model consists of $N$ quantum emitters interacting with a common cavity mode, accounts for losses and decoherence, and is frequently explored for quantum information processing and designing quantum devices. As $N$ increases, it becomes harder to simulate the open Tavis-Cummings model using traditional methods. To address this problem, we implement two quantum algorithms for simulating the dynamics of this model in the inhomogenous, non-resonant regime, with up to three excitations in the cavity. We show that the implemented algorithms have gate complexities that scale polynomially, as $O(N^2)$ and $O(N^3)$. One of these algorithms is the sampling-based wave matrix Lindbladization algorithm, for which we propose two protocols to implement its system-independent fixed interaction, resolving key open questions of [Patel and Wilde, Open Sys. & Info. Dyn., 30:2350014 (2023)]. Furthermore, we benchmark our results against a classical differential equation solver and demonstrate the ability to simulate classically intractable systems.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Noisy intermediate-scale quantum simulation of the one-dimensional wave equation [0.0]
We design and implement quantum circuits for the simulation of the one-dimensional wave equation on the Quantinuum H1-1 quantum computer.
Our approach to simulating the wave equation can be used with appropriate state preparation algorithms across different quantum processors and serve as an application-oriented benchmark.
arXiv Detail & Related papers (2024-02-29T15:21:41Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - A systematic variational approach to band theory in a quantum computer [0.0]
We present a hybrid quantum-classical algorithm to solve the band structure of any periodic system.
We show that the algorithm is reliable in a low-noise device, functional with low precision on present-day noisy quantum computers.
arXiv Detail & Related papers (2021-04-07T21:50:19Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Low-depth Hamiltonian Simulation by Adaptive Product Formula [3.050399782773013]
Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer.
Here, we propose an adaptive approach to construct a low-depth time evolution circuit.
Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
arXiv Detail & Related papers (2020-11-10T18:00:42Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - Model Predictive Control for Finite Input Systems using the D-Wave
Quantum Annealer [4.83782736808514]
The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest.
We present a model predictive control (MPC) algorithm using a quantum annealer.
Two practical applications, namely stabilization of a spring-mass-damper system and dynamic audio quantization, are demonstrated.
arXiv Detail & Related papers (2020-01-06T05:11:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.