論文の概要: Image Velocimetry using Direct Displacement Field estimation with Neural Networks for Fluids
- arxiv url: http://arxiv.org/abs/2501.18641v1
- Date: Tue, 28 Jan 2025 20:40:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:00:28.816107
- Title: Image Velocimetry using Direct Displacement Field estimation with Neural Networks for Fluids
- Title(参考訳): ニューラルネットワークによる流体の直接変位場推定による画像速度測定
- Authors: Efraín Magaña, Francisco Sahli Costabal, Wernher Brevis,
- Abstract要約: 本研究は,ニューラルネットワークと光流方程式を用いて流体流れ場を推定する新しい手法を提案する。
この手法は合成画像と実験画像で検証された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: An important tool for experimental fluids mechanics research is Particle Image Velocimetry (PIV). Several robust methodologies have been proposed to perform the estimation of velocity field from the images, however, alternative methods are still needed to increase the spatial resolution of the results. This work presents a novel approach for estimating fluid flow fields using neural networks and the optical flow equation to predict displacement vectors between sequential images. The result is a continuous representation of the displacement, that can be evaluated on the full spatial resolution of the image. The methodology was validated on synthetic and experimental images. Accurate results were obtained in terms of the estimation of instantaneous velocity fields, and of the determined time average turbulence quantities and power spectral density. The methodology proposed differs of previous attempts of using machine learning for this task: it does not require any previous training, and could be directly used in any pair of images.
- Abstract(参考訳): 実験流体力学研究における重要なツールとして、粒子画像速度測定(Particle Image Velocimetry, PIV)がある。
画像から速度場を推定するためにいくつかのロバストな手法が提案されているが、結果の空間分解能を高めるためにはまだ代替手法が必要である。
本研究では,ニューラルネットワークと光流方程式を用いて流れ場を推定し,逐次画像間の変位ベクトルを予測する手法を提案する。
その結果、変位の連続的な表現であり、画像の完全な空間分解能に基づいて評価することができる。
この手法は合成画像と実験画像で検証された。
その結果, 瞬時流速場の推定, 時間平均乱流量, パワースペクトル密度について, 正確な結果を得た。
提案された方法論は、このタスクに機械学習を使用した以前の試みとは異なる。
関連論文リスト
- ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
フロー画像超解像(FISR)は、低分解能フロー画像から高分解能乱流速度場を復元することを目的としている。
既存のFISR法は主に自然画像パターンのフロー画像を処理する。
第一流れの視覚特性インフォームドFISRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-29T06:48:16Z) - Neural Sinkhorn Gradient Flow [11.4522103360875]
本稿では,ワッサーシュタイン勾配流の時間変化速度場をパラメータ化したニューラルシンクホーン勾配流(NSGF)モデルを提案する。
理論解析により, 試料径が無限大に大きくなるにつれて, 経験的近似の平均場限界は真の基礎速度場に収束することが示された。
高次元タスクにおけるモデル効率をさらに高めるために、二相NSGF++モデルが考案された。
論文 参考訳(メタデータ) (2024-01-25T10:44:50Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
トモグラフィー問題に対する遺伝的および機械学習アプローチの適用について検討する。
ニューラルネットワークベースのスキームは、リアルタイムにキャラクタリゼーションを必要とするアプリケーションにおいて、重要なスピードアップを提供する。
これらの結果は、より一般的な量子プロセスにおけるトモグラフィーアプローチの最適化の基礎となることを期待する。
論文 参考訳(メタデータ) (2022-10-27T11:37:14Z) - Learning to Estimate and Refine Fluid Motion with Physical Dynamics [9.258258917049845]
流体流量推定のための教師なし学習に基づく予測補正手法を提案する。
推定はまずPDE制約の光フロー予測器によって与えられ、次に物理ベースの補正器によって洗練される。
提案手法は,地上の真理情報が効果的に理解できない複雑な実世界の流体シナリオに一般化することができる。
論文 参考訳(メタデータ) (2022-06-21T15:46:49Z) - A robust single-pixel particle image velocimetry based on fully
convolutional networks with cross-correlation embedded [3.3579727024861064]
深層学習法と従来の相互相関法を相乗的に組み合わせた新しい速度場推定パラダイムを提案する。
深層学習法は、粗い速度推定を最適化し、補正し、超解法計算を実現する。
参考として、粗い速度推定は提案アルゴリズムの堅牢性を向上させるのに役立つ。
論文 参考訳(メタデータ) (2021-10-31T03:26:08Z) - Estimating Nonplanar Flow from 2D Motion-blurred Widefield Microscopy
Images via Deep Learning [7.6146285961466]
本研究では,単一テクスチャの広視野顕微鏡画像から,運動ボケの局所特性を用いた平面外粒子の移動を予測する手法を提案する。
この方法では、高速カメラや高強度光露光を必要とせずに、マイクロスコピストが試料の動的特性に関する洞察を得ることができる。
論文 参考訳(メタデータ) (2021-02-14T19:44:28Z) - Neural Particle Image Velocimetry [4.416484585765027]
本稿では,この問題に適応した畳み込みニューラルネットワーク,すなわちボリューム対応ネットワーク(VCN)を紹介する。
ネットワークは、合成データと実フローデータの両方を含むデータセット上で、徹底的にトレーニングされ、テストされる。
解析の結果,提案手法は現場における他の最先端手法と同等の精度を保ちながら,効率の向上を図っている。
論文 参考訳(メタデータ) (2021-01-28T12:03:39Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
本稿では,ディープニューラルネットワークのエンドツーエンドトレーニングに基づくカメラによる車間距離と相対速度推定手法を提案する。
提案手法の重要な特徴は,2つの時間的単眼フレームによって提供される複数の視覚的手がかりの統合である。
また,移動場における視線歪みの影響を緩和する車両中心サンプリング機構を提案する。
論文 参考訳(メタデータ) (2020-06-07T08:18:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。