Fake News Detection After LLM Laundering: Measurement and Explanation
- URL: http://arxiv.org/abs/2501.18649v1
- Date: Wed, 29 Jan 2025 17:58:07 GMT
- Title: Fake News Detection After LLM Laundering: Measurement and Explanation
- Authors: Rupak Kumar Das, Jonathan Dodge,
- Abstract summary: Large Language Models (LLMs) can generate highly convincing and contextually relevant fake news.
This research measures the efficacy of detectors in identifying LLM-paraphrased fake news.
- Score: 0.7661534297488013
- License:
- Abstract: With their advanced capabilities, Large Language Models (LLMs) can generate highly convincing and contextually relevant fake news, which can contribute to disseminating misinformation. Though there is much research on fake news detection for human-written text, the field of detecting LLM-generated fake news is still under-explored. This research measures the efficacy of detectors in identifying LLM-paraphrased fake news, in particular, determining whether adding a paraphrase step in the detection pipeline helps or impedes detection. This study contributes: (1) Detectors struggle to detect LLM-paraphrased fake news more than human-written text, (2) We find which models excel at which tasks (evading detection, paraphrasing to evade detection, and paraphrasing for semantic similarity). (3) Via LIME explanations, we discovered a possible reason for detection failures: sentiment shift. (4) We discover a worrisome trend for paraphrase quality measurement: samples that exhibit sentiment shift despite a high BERTSCORE. (5) We provide a pair of datasets augmenting existing datasets with paraphrase outputs and scores. The dataset is available on GitHub
Related papers
- TextSleuth: Towards Explainable Tampered Text Detection [49.88698441048043]
We propose to explain the basis of tampered text detection with natural language via large multimodal models.
To fill the data gap for this task, we propose a large-scale, comprehensive dataset, ETTD.
Elaborate queries are introduced to generate high-quality anomaly descriptions with GPT4o.
To automatically filter out low-quality annotations, we also propose to prompt GPT4o to recognize tampered texts.
arXiv Detail & Related papers (2024-12-19T13:10:03Z) - Real-time Fake News from Adversarial Feedback [11.742257531343814]
Existing evaluations for fake news detection result in high accuracies over time for LLM-based detectors.
We develop a novel pipeline that leverages natural language feedback from a RAG-based detector to iteratively modify real-time news into deceptive fake news.
arXiv Detail & Related papers (2024-10-18T17:47:11Z) - Exploring the Deceptive Power of LLM-Generated Fake News: A Study of Real-World Detection Challenges [21.425647152424585]
We propose a strong fake news attack method called conditional Variational-autoencoder-Like Prompt (VLPrompt)
Unlike current methods, VLPrompt eliminates the need for additional data collection while maintaining contextual coherence.
Our experiments, including various detection methods and novel human study metrics, were conducted to assess their performance on our dataset.
arXiv Detail & Related papers (2024-03-27T04:39:18Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - FakeGPT: Fake News Generation, Explanation and Detection of Large Language Models [18.543917359268345]
ChatGPT has gained significant attention due to its exceptional natural language processing capabilities.
We employ four prompt methods to generate fake news samples and prove the high quality of these samples through both self-assessment and human evaluation.
We examine ChatGPT's capacity to identify fake news and propose a reason-aware prompt method to improve its performance.
arXiv Detail & Related papers (2023-10-08T07:01:07Z) - Fake News Detectors are Biased against Texts Generated by Large Language
Models [39.36284616311687]
The spread of fake news has emerged as a critical challenge, undermining trust and posing threats to society.
We present a novel paradigm to evaluate fake news detectors in scenarios involving both human-written and LLM-generated misinformation.
arXiv Detail & Related papers (2023-09-15T18:04:40Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
Large language models (LLMs) are remarkably close to high-quality human-authored text.
Existing detection tools can only differentiate between machine-generated and human-authored text.
We propose LLMDet, a model-specific, secure, efficient, and extendable detection tool.
arXiv Detail & Related papers (2023-05-24T10:45:16Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
arXiv Detail & Related papers (2023-05-22T17:13:29Z) - DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability
Curvature [143.5381108333212]
We show that text sampled from an large language model tends to occupy negative curvature regions of the model's log probability function.
We then define a new curvature-based criterion for judging if a passage is generated from a given LLM.
We find DetectGPT is more discriminative than existing zero-shot methods for model sample detection.
arXiv Detail & Related papers (2023-01-26T18:44:06Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - A Multi-Policy Framework for Deep Learning-Based Fake News Detection [0.31498833540989407]
This work introduces Multi-Policy Statement Checker (MPSC), a framework that automates fake news detection.
MPSC uses deep learning techniques to analyze a statement itself and its related news articles, predicting whether it is seemingly credible or suspicious.
arXiv Detail & Related papers (2022-06-01T21:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.