論文の概要: Zero-shot Large Language Models for Long Clinical Text Summarization with Temporal Reasoning
- arxiv url: http://arxiv.org/abs/2501.18724v2
- Date: Mon, 24 Feb 2025 20:28:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 18:40:26.322703
- Title: Zero-shot Large Language Models for Long Clinical Text Summarization with Temporal Reasoning
- Title(参考訳): 時間的推論による長期臨床テキスト要約のためのゼロショット大言語モデル
- Authors: Maya Kruse, Shiyue Hu, Nicholas Derby, Yifu Wu, Samantha Stonbraker, Bingsheng Yao, Dakuo Wang, Elizabeth Goldberg, Yanjun Gao,
- Abstract要約: 大規模言語モデル(LLM)は、医療におけるデータ処理の変革の可能性を示している。
本研究は、時間的推論を必要とする長期臨床テキストの要約におけるゼロショットLDMの有効性を評価する。
- 参考スコア(独自算出の注目度): 23.34116653190641
- License:
- Abstract: Recent advancements in large language models (LLMs) have shown potential for transforming data processing in healthcare, particularly in understanding complex clinical narratives. This study evaluates the efficacy of zero-shot LLMs in summarizing long clinical texts that require temporal reasoning, a critical aspect for comprehensively capturing patient histories and treatment trajectories. We applied a series of advanced zero-shot LLMs to extensive clinical documents, assessing their ability to integrate and accurately reflect temporal dynamics without prior task-specific training. While the models efficiently identified key temporal events, they struggled with chronological coherence over prolonged narratives. The evaluation, combining quantitative and qualitative methods, highlights the strengths and limitations of zero-shot LLMs in clinical text summarization. The results suggest that while promising, zero-shot LLMs require further refinement to effectively support clinical decision-making processes, underscoring the need for enhanced model training approaches that better capture the nuances of temporal information in long context medical documents.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、医療、特に複雑な臨床物語の理解において、データ処理を変換する可能性を示している。
本研究は, 経時的推論を必要とする長期臨床テキストの要約におけるゼロショットLDMsの有効性を, 患者の歴史と治療軌跡を包括的に把握するための重要な側面として評価した。
我々は,広範囲な臨床文献に先進的なゼロショットLPMを応用し,従来のタスク固有の訓練を使わずに,時間的ダイナミクスを統合的かつ正確に反映できる能力を評価した。
モデルは重要な時間的出来事を効果的に特定する一方で、長期にわたる物語に対する年代的一貫性に苦しんだ。
定量的および定性的手法を組み合わせることで,臨床テキスト要約におけるゼロショットLDMの強度と限界を明らかにする。
以上の結果から, 望まれるゼロショットLCMは, 臨床意思決定プロセスを効果的に支援するためにさらなる改良が必要であり, 長期医療文書における時間的情報のニュアンスをより正確に捉えるためのモデルトレーニングアプローチの必要性が示唆された。
関連論文リスト
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
ICU患者の院内死亡率(IHM)予測は、時間的介入と効率的な資源配分に重要である。
本研究は、構造化された生理データと臨床ノートをLarge Language Model(LLM)によって生成された専門家要約と統合し、IHM予測精度を向上させる。
論文 参考訳(メタデータ) (2024-11-25T16:36:38Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
多層構造プロンプトを用いたゼロショット/ファウショットインコンテキスト学習(ICL)のための新しい手法を開発した。
また、ユーザと大規模言語モデル(LLM)間の2つのコミュニケーションスタイルの有効性についても検討する。
本研究は,性別バイアスや偽陰性率などの診断精度とリスク要因を系統的に評価する。
論文 参考訳(メタデータ) (2024-05-10T06:52:44Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text Summaries [56.31117605097345]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
大規模言語モデル(LLM)は、伝統的に自然言語処理に向いている。
本研究では, GPT-4 などの LLM の EHR データへの適応性について検討する。
EHRデータの長手性、スパース性、知識を注入した性質に対応するため、本研究は特定の特徴を考慮に入れている。
論文 参考訳(メタデータ) (2024-01-25T20:14:50Z) - Zero-shot Generative Large Language Models for Systematic Review
Screening Automation [55.403958106416574]
本研究では,ゼロショット大言語モデルを用いた自動スクリーニングの有効性について検討した。
本研究では, 8種類のLCMの有効性を評価し, 予め定義されたリコール閾値を用いた校正手法について検討する。
論文 参考訳(メタデータ) (2024-01-12T01:54:08Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。