RUN: Reversible Unfolding Network for Concealed Object Segmentation
- URL: http://arxiv.org/abs/2501.18783v1
- Date: Thu, 30 Jan 2025 22:19:15 GMT
- Title: RUN: Reversible Unfolding Network for Concealed Object Segmentation
- Authors: Chunming He, Rihan Zhang, Fengyang Xiao, Chenyu Fang, Longxiang Tang, Yulun Zhang, Linghe Kong, Deng-Ping Fan, Kai Li, Sina Farsiu,
- Abstract summary: reversible strategies across both mask and RGB domains.
We propose the Reversible Unfolding Network (RUN), which applies reversible strategies across both mask and RGB domains.
- Score: 61.13528324971598
- License:
- Abstract: Existing concealed object segmentation (COS) methods frequently utilize reversible strategies to address uncertain regions. However, these approaches are typically restricted to the mask domain, leaving the potential of the RGB domain underexplored. To address this, we propose the Reversible Unfolding Network (RUN), which applies reversible strategies across both mask and RGB domains through a theoretically grounded framework, enabling accurate segmentation. RUN first formulates a novel COS model by incorporating an extra residual sparsity constraint to minimize segmentation uncertainties. The iterative optimization steps of the proposed model are then unfolded into a multistage network, with each step corresponding to a stage. Each stage of RUN consists of two reversible modules: the Segmentation-Oriented Foreground Separation (SOFS) module and the Reconstruction-Oriented Background Extraction (ROBE) module. SOFS applies the reversible strategy at the mask level and introduces Reversible State Space to capture non-local information. ROBE extends this to the RGB domain, employing a reconstruction network to address conflicting foreground and background regions identified as distortion-prone areas, which arise from their separate estimation by independent modules. As the stages progress, RUN gradually facilitates reversible modeling of foreground and background in both the mask and RGB domains, directing the network's attention to uncertain regions and mitigating false-positive and false-negative results. Extensive experiments demonstrate the superior performance of RUN and highlight the potential of unfolding-based frameworks for COS and other high-level vision tasks. We will release the code and models.
Related papers
- Sim-to-Real Grasp Detection with Global-to-Local RGB-D Adaptation [19.384129689848294]
This paper focuses on the sim-to-real issue of RGB-D grasp detection and formulates it as a domain adaptation problem.
We present a global-to-local method to address hybrid domain gaps in RGB and depth data and insufficient multi-modal feature alignment.
arXiv Detail & Related papers (2024-03-18T06:42:38Z) - Background Activation Suppression for Weakly Supervised Object
Localization and Semantic Segmentation [84.62067728093358]
Weakly supervised object localization and semantic segmentation aim to localize objects using only image-level labels.
New paradigm has emerged by generating a foreground prediction map to achieve pixel-level localization.
This paper presents two astonishing experimental observations on the object localization learning process.
arXiv Detail & Related papers (2023-09-22T15:44:10Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Reconstruction-driven Dynamic Refinement based Unsupervised Domain
Adaptation for Joint Optic Disc and Cup Segmentation [25.750583118977833]
Glaucoma is one of the leading causes of irreversible blindness.
It remains challenging to train an OD/OC segmentation model that could be deployed successfully to different healthcare centers.
We propose a novel unsupervised domain adaptation (UDA) method called Reconstruction-driven Dynamic Refinement Network (RDR-Net)
arXiv Detail & Related papers (2023-04-10T13:33:13Z) - Complementary Random Masking for RGB-Thermal Semantic Segmentation [63.93784265195356]
RGB-thermal semantic segmentation is a potential solution to achieve reliable semantic scene understanding in adverse weather and lighting conditions.
This paper proposes 1) a complementary random masking strategy of RGB-T images and 2) self-distillation loss between clean and masked input modalities.
We achieve state-of-the-art performance over three RGB-T semantic segmentation benchmarks.
arXiv Detail & Related papers (2023-03-30T13:57:21Z) - Adversarial Bi-Regressor Network for Domain Adaptive Regression [52.5168835502987]
It is essential to learn a cross-domain regressor to mitigate the domain shift.
This paper proposes a novel method Adversarial Bi-Regressor Network (ABRNet) to seek more effective cross-domain regression model.
arXiv Detail & Related papers (2022-09-20T18:38:28Z) - Unseen Object Instance Segmentation with Fully Test-time RGB-D
Embeddings Adaptation [14.258456366985444]
Recently, a popular solution is leveraging RGB-D features of large-scale synthetic data and applying the model to unseen real-world scenarios.
We re-emphasize the adaptation process across Sim2Real domains in this paper.
We propose a framework to conduct the Fully Test-time RGB-D Embeddings Adaptation (FTEA) based on parameters of the BatchNorm layer.
arXiv Detail & Related papers (2022-04-21T02:35:20Z) - MSO: Multi-Feature Space Joint Optimization Network for RGB-Infrared
Person Re-Identification [35.97494894205023]
RGB-infrared cross-modality person re-identification (ReID) task aims to recognize the images of the same identity between the visible modality and the infrared modality.
Existing methods mainly use a two-stream architecture to eliminate the discrepancy between the two modalities in the final common feature space.
We present a novel multi-feature space joint optimization (MSO) network, which can learn modality-sharable features in both the single-modality space and the common space.
arXiv Detail & Related papers (2021-10-21T16:45:23Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.