論文の概要: Targeted Data Fusion for Causal Survival Analysis Under Distribution Shift
- arxiv url: http://arxiv.org/abs/2501.18798v2
- Date: Thu, 15 May 2025 00:48:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 14:06:35.849552
- Title: Targeted Data Fusion for Causal Survival Analysis Under Distribution Shift
- Title(参考訳): 分布シフト下における因果解析のためのターゲットデータ融合
- Authors: Yi Liu, Alexander W. Levis, Ke Zhu, Shu Yang, Peter B. Gilbert, Larry Han,
- Abstract要約: 複数のデータソースにまたがる因果推論は、科学的発見の一般化性と複製性を高めるための有望な道を提供する。
既存のアプローチでは、検閲や離散的かつ連続的な時間の統合など、生存分析のユニークな課題に対処できない。
マルチソース設定におけるターゲットサイト固有の因果効果を推定する2つの新しい手法を提案する。
- 参考スコア(独自算出の注目度): 46.84912148188679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference across multiple data sources offers a promising avenue to enhance the generalizability and replicability of scientific findings. However, data integration methods for time-to-event outcomes, common in biomedical research, are underdeveloped. Existing approaches focus on binary or continuous outcomes but fail to address the unique challenges of survival analysis, such as censoring and the integration of discrete and continuous time. To bridge this gap, we propose two novel methods for estimating target site-specific causal effects in multi-source settings. First, we develop a semiparametric efficient estimator for settings where individual-level data can be shared across sites. Second, we introduce a federated learning framework designed for privacy-constrained environments, which dynamically reweights source-specific contributions to account for discrepancies with the target population. Both methods leverage flexible, nonparametric machine learning models to improve robustness and efficiency. We illustrate the utility of our approaches through simulation studies and an application to multi-site randomized trials of monoclonal neutralizing antibodies for HIV-1 prevention, conducted among cisgender men and transgender persons in the United States, Brazil, Peru, and Switzerland, as well as among women in sub-Saharan Africa. Our findings underscore the potential of these methods to enable efficient, privacy-preserving causal inference for time-to-event outcomes under distribution shift.
- Abstract(参考訳): 複数のデータソースにまたがる因果推論は、科学的発見の一般化性と複製性を高めるための有望な道を提供する。
しかし,生物医学研究に共通するデータ統合手法は未開発である。
既存のアプローチはバイナリや連続的な結果に重点を置いているが、検閲や離散的かつ連続的な時間の統合といった生存分析の独特な課題に対処できない。
このギャップを埋めるために,複数ソース設定におけるターゲットサイト固有の因果効果を推定する2つの新しい手法を提案する。
まず、各サイト間で個別レベルのデータを共有可能な設定のための半パラメトリック効率的な推定器を開発する。
第2に、プライバシ制約のある環境向けに設計されたフェデレーション学習フレームワークを導入し、ターゲット人口との相違を考慮して、ソース固有のコントリビューションを動的に強調する。
どちらの手法も柔軟で非パラメトリックな機械学習モデルを活用して、堅牢性と効率性を向上させる。
本研究は,HIV-1予防のためのモノクローナル中和抗体の多部位ランダム化試験への応用について,米国,ブラジル,ペルー,スイスおよびサハラ以南のアフリカの女性を対象に行った。
本研究は, 配電系統の経時的変化に対して, 効率よく, プライバシに配慮した因果推論を可能にする手法の可能性を明らかにするものである。
関連論文リスト
- Multi-Source Conformal Inference Under Distribution Shift [41.701790856201036]
複数のバイアスのあるデータソースを活用することにより,対象個体数の分布自由な予測区間を得るという課題を考察する。
対象集団および源集団における未観測結果の定量値に対する効率的な影響関数を導出する。
本稿では、効率向上のための重み付き情報ソースとバイアス低減のための重み付き非情報ソースに対するデータ適応戦略を提案する。
論文 参考訳(メタデータ) (2024-05-15T13:33:09Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Multiply Robust Federated Estimation of Targeted Average Treatment
Effects [0.0]
多地点データを用いて,対象個体群に対する有効な因果推論を導出する手法を提案する。
提案手法では,移動学習を組み込んでアンサンブル重みを推定し,ソースサイトからの情報を組み合わせる。
論文 参考訳(メタデータ) (2023-09-22T03:15:08Z) - Robust Direct Learning for Causal Data Fusion [14.462235940634969]
我々は、他のニュアンス関数から処理効果を分離するマルチソースデータを統合するためのフレームワークを提供する。
また,半パラメトリック効率理論の理論的洞察に基づく因果情報認識重み付け関数を提案する。
論文 参考訳(メタデータ) (2022-11-01T03:33:22Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
医療分野では、患者と臨床データの均一性を生かして、多施設共同研究がより一般化可能な発見をもたらすことがしばしばある。
最近のプライバシー規制は、データの共有を妨げ、その結果、診断と予後をサポートする機械学習ベースのソリューションを考案する。
ローカルノードの機能を統合する分散分散手法を提案し、プライバシを維持しながら複数のデータセットをまたいで一般化可能なモデルを提供する。
論文 参考訳(メタデータ) (2022-06-20T23:49:38Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。