Adaptivity and Convergence of Probability Flow ODEs in Diffusion Generative Models
- URL: http://arxiv.org/abs/2501.18863v1
- Date: Fri, 31 Jan 2025 03:10:10 GMT
- Title: Adaptivity and Convergence of Probability Flow ODEs in Diffusion Generative Models
- Authors: Jiaqi Tang, Yuling Yan,
- Abstract summary: This paper contributes to establishing theoretical guarantees for the probability flow ODE, a diffusion-based sampler known for its practical efficiency.
We demonstrate that, with accurate score function estimation, the probability flow ODE sampler achieves a convergence rate of $O(k/T)$ in total variation distance.
This dimension-free convergence rate improves upon existing results that scale with the typically much larger ambient dimension.
- Score: 5.064404027153094
- License:
- Abstract: Score-based generative models, which transform noise into data by learning to reverse a diffusion process, have become a cornerstone of modern generative AI. This paper contributes to establishing theoretical guarantees for the probability flow ODE, a widely used diffusion-based sampler known for its practical efficiency. While a number of prior works address its general convergence theory, it remains unclear whether the probability flow ODE sampler can adapt to the low-dimensional structures commonly present in natural image data. We demonstrate that, with accurate score function estimation, the probability flow ODE sampler achieves a convergence rate of $O(k/T)$ in total variation distance (ignoring logarithmic factors), where $k$ is the intrinsic dimension of the target distribution and $T$ is the number of iterations. This dimension-free convergence rate improves upon existing results that scale with the typically much larger ambient dimension, highlighting the ability of the probability flow ODE sampler to exploit intrinsic low-dimensional structures in the target distribution for faster sampling.
Related papers
- O(d/T) Convergence Theory for Diffusion Probabilistic Models under Minimal Assumptions [6.76974373198208]
We establish a fast convergence theory for the denoising diffusion probabilistic model (DDPM) under minimal assumptions.
We show that the convergence rate improves to $O(k/T)$, where $k$ is the intrinsic dimension of the target data distribution.
This highlights the ability of DDPM to automatically adapt to unknown low-dimensional structures.
arXiv Detail & Related papers (2024-09-27T17:59:10Z) - A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models [45.60426164657739]
We develop non-asymptotic convergence theory for a diffusion-based sampler.
We prove that $d/varepsilon$ are sufficient to approximate the target distribution to within $varepsilon$ total-variation distance.
Our results also characterize how $ell$ score estimation errors affect the quality of the data generation processes.
arXiv Detail & Related papers (2024-08-05T09:02:24Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation [11.874729463016227]
We introduce a conditional pseudo-reversible normalizing flow for constructing surrogate models of a physical model polluted by additive noise.
The training process utilizes dataset consisting of input-output pairs without requiring prior knowledge about the noise and the function.
Our model, once trained, can generate samples from any conditional probability density functions whose high probability regions are covered by the training set.
arXiv Detail & Related papers (2024-03-31T00:09:58Z) - Adversarial Likelihood Estimation With One-Way Flows [44.684952377918904]
Generative Adversarial Networks (GANs) can produce high-quality samples, but do not provide an estimate of the probability density around the samples.
We show that our method converges faster, produces comparable sample quality to GANs with similar architecture, successfully avoids over-fitting to commonly used datasets and produces smooth low-dimensional latent representations of the training data.
arXiv Detail & Related papers (2023-07-19T10:26:29Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Matching Normalizing Flows and Probability Paths on Manifolds [57.95251557443005]
Continuous Normalizing Flows (CNFs) are generative models that transform a prior distribution to a model distribution by solving an ordinary differential equation (ODE)
We propose to train CNFs by minimizing probability path divergence (PPD), a novel family of divergences between the probability density path generated by the CNF and a target probability density path.
We show that CNFs learned by minimizing PPD achieve state-of-the-art results in likelihoods and sample quality on existing low-dimensional manifold benchmarks.
arXiv Detail & Related papers (2022-07-11T08:50:19Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.