Continuous-Time Analysis of Federated Averaging
- URL: http://arxiv.org/abs/2501.18870v1
- Date: Fri, 31 Jan 2025 03:46:10 GMT
- Title: Continuous-Time Analysis of Federated Averaging
- Authors: Tom Overman, Diego Klabjan,
- Abstract summary: FedAvg is a popular algorithm for horizontal federated learning (FL), where samples are gathered across different clients and are not shared with each other or a central server.
We use techniques from processes to establish convergence guarantees under different loss functions, some of which are more general than existing work in the discrete setting.
We also provide conditions for which FedAvg updates to the server weights can be approximated as normal random variables.
- Score: 11.955062839855334
- License:
- Abstract: Federated averaging (FedAvg) is a popular algorithm for horizontal federated learning (FL), where samples are gathered across different clients and are not shared with each other or a central server. Extensive convergence analysis of FedAvg exists for the discrete iteration setting, guaranteeing convergence for a range of loss functions and varying levels of data heterogeneity. We extend this analysis to the continuous-time setting where the global weights evolve according to a multivariate stochastic differential equation (SDE), which is the first time FedAvg has been studied from the continuous-time perspective. We use techniques from stochastic processes to establish convergence guarantees under different loss functions, some of which are more general than existing work in the discrete setting. We also provide conditions for which FedAvg updates to the server weights can be approximated as normal random variables. Finally, we use the continuous-time formulation to reveal generalization properties of FedAvg.
Related papers
- A Unified Analysis for Finite Weight Averaging [50.75116992029417]
Averaging iterations of Gradient Descent (SGD) have achieved empirical success in training deep learning models, such as Weight Averaging (SWA), Exponential Moving Average (EMA), and LAtest Weight Averaging (LAWA)
In this paper, we generalize LAWA as Finite Weight Averaging (FWA) and explain their advantages compared to SGD from the perspective of optimization and generalization.
arXiv Detail & Related papers (2024-11-20T10:08:22Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays [0.0]
Federated learning (FL) was recently proposed to securely train models with data held over multiple locations ("clients")
Two major challenges hindering the performance of FL algorithms are long training times caused by straggling clients, and a decline in model accuracy under non-iid local data distributions ("client drift")
We propose and analyze Asynchronous Exact Averaging (AREA), a new (sub)gradient algorithm that utilizes communication to speed up convergence and enhance scalability, and employs client memory to correct the client drift caused by variations in client update frequencies.
arXiv Detail & Related papers (2024-05-16T14:22:49Z) - DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
We consider a setting in which $N$ agents aim to speedup a common Approximation problem by acting in parallel and communicating with a central server.
To mitigate the effect of delays and stragglers, we propose textttDASA, a Delay-Adaptive algorithm for multi-agent Approximation.
arXiv Detail & Related papers (2024-03-25T22:49:56Z) - Momentum Benefits Non-IID Federated Learning Simply and Provably [22.800862422479913]
Federated learning is a powerful paradigm for large-scale machine learning.
FedAvg and SCAFFOLD are two prominent algorithms to address these challenges.
This paper explores the utilization of momentum to enhance the performance of FedAvg and SCAFFOLD.
arXiv Detail & Related papers (2023-06-28T18:52:27Z) - A General Theory for Federated Optimization with Asynchronous and
Heterogeneous Clients Updates [10.609815608017065]
We extend the standard FedAvg aggregation scheme by introducing aggregation weights to represent the variability of the clients update time.
Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of gradient descent.
We develop in this work FedFix, a novel extension of FedAvg enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation.
arXiv Detail & Related papers (2022-06-21T08:46:05Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Tackling the Objective Inconsistency Problem in Heterogeneous Federated
Optimization [93.78811018928583]
This paper provides a framework to analyze the convergence of federated heterogeneous optimization algorithms.
We propose FedNova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
arXiv Detail & Related papers (2020-07-15T05:01:23Z) - A Unified Linear Speedup Analysis of Federated Averaging and Nesterov
FedAvg [49.76940694847521]
Federated learning (FL) learns a model jointly from a set of participating devices without sharing each other's privately held data.
In this paper, we focus on Federated Averaging (FedAvg), one of the most popular and effective FL algorithms in use today.
We show that FedAvg enjoys linear speedup in each case, although with different convergence rates and communication efficiencies.
arXiv Detail & Related papers (2020-07-11T05:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.