論文の概要: Trustworthy Evaluation of Generative AI Models
- arxiv url: http://arxiv.org/abs/2501.18897v1
- Date: Fri, 31 Jan 2025 05:31:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:31.995642
- Title: Trustworthy Evaluation of Generative AI Models
- Title(参考訳): 生成AIモデルの信頼性評価
- Authors: Zijun Gao, Yan Sun,
- Abstract要約: 本研究では, 相対的性能差の非バイアス推定器を用いて, 2つの生成モデルを比較する手法を提案する。
提案手法は効率が高く,並列計算と事前保存中間結果により高速化できる。
統計的信頼度のある実画像データセット上での拡散モデルの評価において,本手法の有効性を示す。
- 参考スコア(独自算出の注目度): 6.653749938600871
- License:
- Abstract: Generative AI (GenAI) models have recently achieved remarkable empirical performance in various applications, however, their evaluations yet lack uncertainty quantification. In this paper, we propose a method to compare two generative models based on an unbiased estimator of their relative performance gap. Statistically, our estimator achieves parametric convergence rate and asymptotic normality, which enables valid inference. Computationally, our method is efficient and can be accelerated by parallel computing and leveraging pre-storing intermediate results. On simulated datasets with known ground truth, we show our approach effectively controls type I error and achieves power comparable with commonly used metrics. Furthermore, we demonstrate the performance of our method in evaluating diffusion models on real image datasets with statistical confidence.
- Abstract(参考訳): 生成AI(GenAI)モデルは、最近、様々なアプリケーションで顕著な経験的性能を達成したが、その評価には不確実な定量化が欠けている。
本稿では,相対的性能ギャップの非バイアス推定器に基づく2つの生成モデルを比較する手法を提案する。
統計的には, パラメトリック収束率と漸近正規度が得られ, 有効推論が可能となる。
計算上,本手法は効率的であり,並列計算と事前記憶中間結果の活用により高速化できる。
既知基底真理を持つシミュレーションデータセットでは,本手法がI型エラーを効果的に制御し,一般的に使用されている指標に匹敵するパワーを達成することを示す。
さらに,統計的信頼度のある実画像データセット上での拡散モデルの評価において,本手法の有効性を示す。
関連論文リスト
- MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
本報告では,テキストや画像の生成モデルで発生するような分布のペア間の比較尺度であるMAUVEについて述べる。
我々は、MAUVEが人間の文章の分布と現代のニューラル言語モデルとのギャップを定量化できることを発見した。
我々は、MAUVEが既存のメトリクスと同等以上の画像の既知の特性を識別できることを視覚領域で実証する。
論文 参考訳(メタデータ) (2022-12-30T07:37:40Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - A bandit-learning approach to multifidelity approximation [7.960229223744695]
マルチファイデリティ近似は、科学計算とシミュレーションにおいて重要な技術である。
異なる忠実度のデータを利用して正確な推定を行うためのバンディットラーニング手法を紹介します。
論文 参考訳(メタデータ) (2021-03-29T05:29:35Z) - Modeling Score Distributions and Continuous Covariates: A Bayesian
Approach [8.772459063453285]
連続共変量に対するマッチングと非マッチスコア分布の生成モデルを構築した。
混合モデルを用いて任意の分布と局所基底関数をキャプチャする。
提案手法の精度と有効性を示す3つの実験を行った。
論文 参考訳(メタデータ) (2020-09-21T02:41:20Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
我々は,DALI(Decomposed Adversarial Learned Inference)という新しいアプローチを提案する。
DALIは、データ空間とコード空間の両方の事前および条件分布を明示的に一致させる。
MNIST, CIFAR-10, CelebAデータセットにおけるDALIの有効性を検証する。
論文 参考訳(メタデータ) (2020-04-21T20:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。