論文の概要: Quantum function secret sharing
- arxiv url: http://arxiv.org/abs/2501.18928v1
- Date: Fri, 31 Jan 2025 07:16:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:25.799577
- Title: Quantum function secret sharing
- Title(参考訳): 量子関数秘密共有
- Authors: Alex B. Grilo, Ramis Movassagh,
- Abstract要約: このプリミティブでは、古典的なディーラーが秘密量子回路を$C$に分配し、$p$量子パーティに株式を提供する。
入力状態 $|psirangle$ とプロジェクション $Pi$ のパーティは、計算値 $y_i$ を計算し、古典的にディーラーに通信する。
我々は、我々の計画が単一の敵に対してのみ安全であることを示し、もし2つの当事者が共謀すれば、彼らはそのセキュリティを破ることができることを示した。
- 参考スコア(独自算出の注目度): 0.7698425352464362
- License:
- Abstract: We propose a quantum function secret sharing scheme in which the communication is exclusively classical. In this primitive, a classical dealer distributes a secret quantum circuit $C$ by providing shares to $p$ quantum parties. The parties on an input state $|\psi\rangle$ and a projection $\Pi$, compute values $y_i$ that they then classically communicate back to the dealer, who can then compute $\lVert \Pi C|\psi\rangle\rVert^2$ using only classical resources. Moreover, the shares do not leak much information about the secret circuit $C$. Our protocol for quantum secret sharing uses the {\em Cayley path}, a tool that has been extensively used to support quantum primacy claims. More concretely, the shares of $C$ correspond to randomized version of $C$ which are delegated to the quantum parties, and the reconstruction can be done by extrapolation. Our scheme has two limitations, which we prove to be inherent to our techniques: First, our scheme is only secure against single adversaries, and we show that if two parties collude, then they can break its security. Second, the evaluation done by the parties requires exponential time in the number of gates.
- Abstract(参考訳): 通信が古典的である量子関数秘密共有方式を提案する。
このプリミティブでは、古典的なディーラーが秘密量子回路を$C$に分配し、$p$量子パーティに株式を提供する。
入力状態の$|\psi\rangle$とプロジェクションの$\Pi$、計算値の$y_i$は、古典的にディーラーと通信し、古典的なリソースのみを使用して$\lVert \Pi C|\psi\rangle\rVert^2$を計算できる。
さらに、この株はシークレット・サーキットの$C$に関する情報をあまり漏らさない。
量子秘密共有のための弊社のプロトコルは、量子プライオリティの主張をサポートするために広く使われているツールである {\em Cayley path} を使っている。
より具体的には、$C$の共有は量子パーティに委譲される$C$のランダム化バージョンに対応しており、再構成は外挿によって行うことができる。
私たちのスキームには2つの制限があります。まず第一に、我々のスキームは単一の敵に対してのみ安全であり、もし2つのパーティが共謀すれば、彼らはそのセキュリティを破ることができます。
第二に、当事者による評価は、ゲート数の指数時間を必要とする。
関連論文リスト
- Quantum Secure Protocols for Multiparty Computations [2.9561405287476177]
量子攻撃に耐えられるセキュアなマルチパーティ計算(MPC)プロトコルを提案する。
まず、量子領域における情報理論のセキュアな半線形評価(OLE)、すなわち$sf qOLE$の設計と解析について述べる。
さらに、ビルディングブロックとして$sf qOLE$を使用し、MPSIプロトコルを構築します。
論文 参考訳(メタデータ) (2023-12-26T19:53:29Z) - Quantum Symmetric Private Information Retrieval with Secure Storage and
Eavesdroppers [32.97918488607827]
X$-secure,$E$-eavesdropped,$T$-colluding symmetric private information search (SPIR)の古典的および量子的変動について考察する。
まず,古典的な$X$-secure,$E$-eavesdropped,$T$-colluding SPIR (XSETSPIR) を,クロス部分空間アライメント (CSA) の修正版に基づいて開発する。
論文 参考訳(メタデータ) (2023-08-21T17:30:38Z) - Lattice-Based Quantum Advantage from Rotated Measurements [2.0249250133493195]
我々は、$XY$-planeの量子ビット測定範囲全体を利用する新しい手法を示す。
パウリ-Z$補正まで$XY$平面上の任意の状態のブラインド遠隔準備のためのワンラウンドプロトコルを構築する。
論文 参考訳(メタデータ) (2022-10-18T20:18:15Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
パラメータ化量子回路で完了した2プレーヤゼロサムゲームとして,両部絡み検出を再構成する。
このプロトコルを線形光ネットワーク上で実験的に実装し、5量子量子純状態と2量子量子混合状態の両部絡み検出に有効であることを示す。
論文 参考訳(メタデータ) (2022-03-15T09:46:45Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
作業の証明(英: proof of work、PoW)は、当事者が計算タスクの解決にいくらかの労力を費やしたことを他人に納得させることができる重要な暗号構造である。
本研究では、量子戦略に対してそのようなPoWの連鎖を見つけることの難しさについて検討する。
我々は、PoWs問題の連鎖が、マルチソリューションBernoulliサーチと呼ばれる問題に還元されることを証明し、量子クエリの複雑さを確立する。
論文 参考訳(メタデータ) (2020-12-30T18:03:56Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
古典的アリス(Alice)と量子的ボブ(Quantum Bob)が古典的なチャネルを通してのみ通信できるような設定を考える。
悪質な量子逆数の場合,ブラックボックスシミュレーションを用いた2次元量子関数を実現することは,一般に不可能であることを示す。
我々は、QMA関係Rの古典的量子知識(PoQK)プロトコルを入力として、古典的当事者によって検証可能なRのゼロ知識PoQKを出力するコンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-15T17:55:31Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
計算・比較プログラム(Computer-and-compare program)として知られる回避関数のクラスに対する量子コピー保護スキームを導入する。
我々は,量子乱数オラクルモデル(QROM)において,完全悪意のある敵に対する非自明なセキュリティを実現することを証明した。
補完的な結果として、「セキュアソフトウェアリース」という,ソフトウェア保護の概念の弱さが示される。
論文 参考訳(メタデータ) (2020-09-29T08:41:53Z) - Quantum Differentially Private Sparse Regression Learning [132.1981461292324]
我々は、スパース回帰問題を解くために、効率的な量子微分プライベート(QDP)ラッソ推定器を考案する。
最後に、QDP Lasso はプライバシー保証付きで $tildeO(N-2/3)$ に近い最適ユーティリティを実現していることを示す。
論文 参考訳(メタデータ) (2020-07-23T10:50:42Z) - Succinct Blind Quantum Computation Using a Random Oracle [0.8702432681310399]
我々は新しい普遍的な盲点量子計算プロトコルを提供する。
プロトコルの最初のフェーズは簡潔であり、その複雑さは回路サイズとは無関係である。
論文 参考訳(メタデータ) (2020-04-27T07:47:11Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z) - Universal Communication Efficient Quantum Threshold Secret Sharing
Schemes [3.8073142980733]
通信複雑性の低いより一般的な$((k,n))$量子秘密共有スキームを提案する。
我々のスキームは、コンバインダーがあらゆる当事者と接触し、通信効率で秘密を回復できるという意味で普遍的である。
論文 参考訳(メタデータ) (2020-02-21T11:14:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。