論文の概要: Training-free Quantum-Inspired Image Edge Extraction Method
- arxiv url: http://arxiv.org/abs/2501.18929v1
- Date: Fri, 31 Jan 2025 07:24:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:01:56.930622
- Title: Training-free Quantum-Inspired Image Edge Extraction Method
- Title(参考訳): トレーニング不要な量子インスパイア画像エッジ抽出法
- Authors: Arti Jain, Pradeep Singh,
- Abstract要約: トレーニング不要で量子にインスパイアされたエッジ検出モデルを提案する。
提案手法は,古典的なソベルエッジ検出,シュリンガー波動方程式の洗練,ハイブリッドフレームワークを統合する。
トレーニングの必要性をなくすことで、モデルは軽量で多様なアプリケーションに適用できます。
- 参考スコア(独自算出の注目度): 4.8188571652305185
- License:
- Abstract: Edge detection is a cornerstone of image processing, yet existing methods often face critical limitations. Traditional deep learning edge detection methods require extensive training datasets and fine-tuning, while classical techniques often fail in complex or noisy scenarios, limiting their real-world applicability. To address these limitations, we propose a training-free, quantum-inspired edge detection model. Our approach integrates classical Sobel edge detection, the Schr\"odinger wave equation refinement, and a hybrid framework combining Canny and Laplacian operators. By eliminating the need for training, the model is lightweight and adaptable to diverse applications. The Schr\"odinger wave equation refines gradient-based edge maps through iterative diffusion, significantly enhancing edge precision. The hybrid framework further strengthens the model by synergistically combining local and global features, ensuring robustness even under challenging conditions. Extensive evaluations on datasets like BIPED, Multicue, and NYUD demonstrate superior performance of the proposed model, achieving state-of-the-art metrics, including ODS, OIS, AP, and F-measure. Noise robustness experiments highlight its reliability, showcasing its practicality for real-world scenarios. Due to its versatile and adaptable nature, our model is well-suited for applications such as medical imaging, autonomous systems, and environmental monitoring, setting a new benchmark for edge detection.
- Abstract(参考訳): エッジ検出は画像処理の基盤であるが、既存の手法はしばしば限界に直面している。
従来のディープラーニングエッジ検出方法は広範なトレーニングデータセットと微調整を必要とするが、古典的なテクニックは複雑なシナリオやノイズの多いシナリオで失敗し、現実の応用性が制限されることが多い。
これらの制約に対処するために、トレーニング不要で量子にインスパイアされたエッジ検出モデルを提案する。
提案手法は,古典的なソベルエッジ検出,シュリンガー波動方程式の洗練,およびCannyとLaplacian演算子を組み合わせたハイブリッドフレームワークを統合する。
トレーニングの必要性をなくすことで、モデルは軽量で多様なアプリケーションに適用できます。
Schr\\odinger 波動方程式は反復拡散を通じて勾配に基づくエッジマップを洗練し、エッジ精度を大幅に向上させる。
このハイブリッドフレームワークは、局所的特徴とグローバルな特徴を相乗的に組み合わせてモデルをさらに強化し、挑戦的な条件下でも堅牢性を確保する。
BIPED、Multicue、NYUDといったデータセットに対する大規模な評価は、提案されたモデルの優れたパフォーマンスを示し、ODS、OIS、AP、F測定といった最先端のメトリクスを実現している。
騒音の堅牢性実験は、その信頼性を強調し、現実のシナリオに対する実用性を示している。
その汎用性と適応性のため、医療画像、自律システム、環境モニタリングなどの応用に適しており、エッジ検出のための新しいベンチマークを設定している。
関連論文リスト
- Distilling Calibration via Conformalized Credal Inference [36.01369881486141]
信頼性を高める方法の1つは、ベイズ推定による不確実な定量化である。
本稿では,より複雑なモデルからキャリブレーション情報を抽出することにより,この問題に対処する低複雑さ手法を提案する。
視覚的および言語的タスクの実験により,提案手法はCD-CI (Conformalized Distillation for Credal Inference) と呼ばれ,校正性能が著しく向上することが示された。
論文 参考訳(メタデータ) (2025-01-10T15:57:23Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
エッジコンピューティングは、時間に敏感なシナリオでディープラーニングベースのオブジェクト検出をデプロイするための重要なパラダイムとして登場した。
既存のエッジ検出手法では、軽量モデルによる検出精度のバランスの難しさ、適応性の制限、現実の検証の不十分といった課題に直面している。
本稿では,汎用的なプラグイン・アンド・プレイコンポーネントを用いてエッジ環境にオブジェクト検出モデルを適用するエッジ検出ツールボックス(ED-TOOLBOX)を提案する。
論文 参考訳(メタデータ) (2024-12-24T07:28:10Z) - Sharpening Your Density Fields: Spiking Neuron Aided Fast Geometry Learning [8.657209169726977]
そこで我々は,手動選択の必要性を排除し,閾値を動的に調整するスパイキングニューロン機構を導入する。
我々は、合成データセットと実世界のデータセットの両方に関する広範な実験を通じて、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2024-12-13T05:51:03Z) - Generative Edge Detection with Stable Diffusion [52.870631376660924]
エッジ検出は一般的に、主に識別法によって対処されるピクセルレベルの分類問題と見なされる。
本稿では、事前学習した安定拡散モデルのポテンシャルを十分に活用して、GED(Generative Edge Detector)という新しい手法を提案する。
複数のデータセットに対して広範な実験を行い、競争性能を達成する。
論文 参考訳(メタデータ) (2024-10-04T01:52:23Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - Maximum entropy exploration in contextual bandits with neural networks
and energy based models [63.872634680339644]
モデルには2つのクラスがあり、1つはニューラルネットワークを報酬推定器とし、もう1つはエネルギーベースモデルを示す。
両手法は、エネルギーベースモデルが最も優れた性能を持つ、よく知られた標準アルゴリズムより優れていることを示す。
これは、静的および動的設定でよく機能する新しいテクニックを提供し、特に連続的なアクション空間を持つ非線形シナリオに適している。
論文 参考訳(メタデータ) (2022-10-12T15:09:45Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning [2.12121796606941]
完全な波形反転は高分解能地下モデルを生成する。
最小二乗関数を持つFWIは、局所ミニマ問題のような多くの欠点に悩まされる。
偏微分方程式とニューラルネットワークを用いた最近の研究は、2次元FWIに対して有望な性能を示している。
本稿では,波動方程式を識別ネットワークに統合し,物理的に一貫したモデルを正確に推定する,教師なし学習パラダイムを提案する。
論文 参考訳(メタデータ) (2021-09-23T15:54:40Z) - Self-Regression Learning for Blind Hyperspectral Image Fusion Without
Label [11.291055330647977]
ハイパースペクトル画像(HSI)を再構築した自己回帰学習法を提案し,観察モデルを推定する。
特に,hsiを復元するinvertible neural network (inn) と,観測モデルを推定する2つの完全連結ネットワーク (fcn) を採用している。
我々のモデルは、合成データと実世界のデータセットの両方で実験で最先端の手法を上回ることができる。
論文 参考訳(メタデータ) (2021-03-31T04:48:21Z) - DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring [66.91879314310842]
本稿では,古典的なWienerデコンボリューションフレームワークを学習深い特徴と統合することにより,特徴空間における明示的なデコンボリューションプロセスを提案する。
マルチスケールのカスケード機能改善モジュールは、分離された深い特徴から退色画像を予測する。
提案したDeep Wienerデコンボリューションネットワークは,目に見える成果物が少なく,かつ,最先端の非盲点画像デコンボリューション手法を広いマージンで定量的に上回っていることを示す。
論文 参考訳(メタデータ) (2021-03-18T00:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。