Optimal Transport-based Conformal Prediction
- URL: http://arxiv.org/abs/2501.18991v1
- Date: Fri, 31 Jan 2025 09:48:28 GMT
- Title: Optimal Transport-based Conformal Prediction
- Authors: Gauthier Thurin, Kimia Nadjahi, Claire Boyer,
- Abstract summary: Conformal Prediction (CP) is a principled framework for uncertainty in blackbox learning models.
We introduce a novel CP procedure handling prediction score functions through a lens.
We then adapt our method for quantifying multi-output regression and multiclass classification.
- Score: 8.302146576157497
- License:
- Abstract: Conformal Prediction (CP) is a principled framework for quantifying uncertainty in blackbox learning models, by constructing prediction sets with finite-sample coverage guarantees. Traditional approaches rely on scalar nonconformity scores, which fail to fully exploit the geometric structure of multivariate outputs, such as in multi-output regression or multiclass classification. Recent methods addressing this limitation impose predefined convex shapes for the prediction sets, potentially misaligning with the intrinsic data geometry. We introduce a novel CP procedure handling multivariate score functions through the lens of optimal transport. Specifically, we leverage Monge-Kantorovich vector ranks and quantiles to construct prediction region with flexible, potentially non-convex shapes, better suited to the complex uncertainty patterns encountered in multivariate learning tasks. We prove that our approach ensures finite-sample, distribution-free coverage properties, similar to typical CP methods. We then adapt our method for multi-output regression and multiclass classification, and also propose simple adjustments to generate adaptive prediction regions with asymptotic conditional coverage guarantees. Finally, we evaluate our method on practical regression and classification problems, illustrating its advantages in terms of (conditional) coverage and efficiency.
Related papers
- Epistemic Uncertainty in Conformal Scores: A Unified Approach [2.449909275410288]
Conformal prediction methods create prediction bands with distribution-free guarantees but do not explicitly capture uncertainty.
We introduce $texttEPICSCORE$, a model-agnostic approach that enhances any conformal score by explicitly integrating uncertainty.
$texttEPICSCORE$ adaptively expands predictive intervals in regions with limited data while maintaining compact intervals where data is abundant.
arXiv Detail & Related papers (2025-02-10T19:42:54Z) - Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Conformal Prediction for Ensembles: Improving Efficiency via Score-Based Aggregation [18.928543069018865]
Conformal prediction is one approach that avoids distributional assumptions.
Merging prediction regions directly, however, sacrifices structures present in the conformal scores that can further reduce conservatism.
We show that a novel framework can be efficiently leveraged in both classification and predict-then-optimize regression settings.
arXiv Detail & Related papers (2024-05-25T14:11:01Z) - Distribution-free Conformal Prediction for Ordinal Classification [0.0]
Ordinal classification is common in real applications where the target variable has natural ordering among the class labels.
New conformal prediction methods are developed for constructing contiguous and non-contiguous prediction sets.
arXiv Detail & Related papers (2024-04-25T13:49:59Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Universal Prediction Band via Semi-Definite Programming [4.401255328572734]
We propose a method to construct nonparametric, heteroskedastic prediction bands for uncertainty quantification.
The data-adaptive prediction band is universally applicable with minimal distributional assumptions.
arXiv Detail & Related papers (2021-03-31T16:30:58Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
One-sided prediction (OSP) based relaxation yields an SC scheme that attains near-optimal coverage in the practically relevant high target accuracy regime.
We theoretically derive bounds generalization for SC and OSP, and empirically we show that our scheme strongly outperforms state of the art methods in coverage at small error levels.
arXiv Detail & Related papers (2020-10-15T16:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.