On the Impact of Noise in Differentially Private Text Rewriting
- URL: http://arxiv.org/abs/2501.19022v1
- Date: Fri, 31 Jan 2025 10:45:24 GMT
- Title: On the Impact of Noise in Differentially Private Text Rewriting
- Authors: Stephen Meisenbacher, Maulik Chevli, Florian Matthes,
- Abstract summary: We introduce a new sentence infilling privatization technique, and we use this method to explore the effect of noise in DP text rewriting.
We empirically demonstrate that non-DP privatization techniques excel in utility preservation and can find an acceptable empirical privacy-utility trade-off, yet cannot outperform DP methods in empirical privacy protections.
- Score: 3.0177210416625124
- License:
- Abstract: The field of text privatization often leverages the notion of $\textit{Differential Privacy}$ (DP) to provide formal guarantees in the rewriting or obfuscation of sensitive textual data. A common and nearly ubiquitous form of DP application necessitates the addition of calibrated noise to vector representations of text, either at the data- or model-level, which is governed by the privacy parameter $\varepsilon$. However, noise addition almost undoubtedly leads to considerable utility loss, thereby highlighting one major drawback of DP in NLP. In this work, we introduce a new sentence infilling privatization technique, and we use this method to explore the effect of noise in DP text rewriting. We empirically demonstrate that non-DP privatization techniques excel in utility preservation and can find an acceptable empirical privacy-utility trade-off, yet cannot outperform DP methods in empirical privacy protections. Our results highlight the significant impact of noise in current DP rewriting mechanisms, leading to a discussion of the merits and challenges of DP in NLP, as well as the opportunities that non-DP methods present.
Related papers
- Differentially Private Policy Gradient [48.748194765816955]
We show that it is possible to find the right trade-off between privacy noise and trust-region size to obtain a performant differentially private policy gradient algorithm.
Our results and the complexity of the tasks addressed represent a significant improvement over existing DP algorithms in online RL.
arXiv Detail & Related papers (2025-01-31T12:11:13Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.
We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.
We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Private Language Models via Truncated Laplacian Mechanism [18.77713904999236]
We propose a novel private embedding method called the high dimensional truncated Laplacian mechanism.
We show that our method has a lower variance compared to the previous private word embedding methods.
Remarkably, even in the high privacy regime, our approach only incurs a slight decrease in utility compared to the non-private scenario.
arXiv Detail & Related papers (2024-10-10T15:25:02Z) - Thinking Outside of the Differential Privacy Box: A Case Study in Text Privatization with Language Model Prompting [3.3916160303055567]
We discuss the restrictions that Differential Privacy (DP) integration imposes, as well as bring to light the challenges that such restrictions entail.
Our results demonstrate the need for more discussion on the usability of DP in NLP and its benefits over non-DP approaches.
arXiv Detail & Related papers (2024-10-01T14:46:15Z) - Just Rewrite It Again: A Post-Processing Method for Enhanced Semantic Similarity and Privacy Preservation of Differentially Private Rewritten Text [3.3916160303055567]
We propose a simple post-processing method based on the goal of aligning rewritten texts with their original counterparts.
Our results show that such an approach not only produces outputs that are more semantically reminiscent of the original inputs, but also texts which score on average better in empirical privacy evaluations.
arXiv Detail & Related papers (2024-05-30T08:41:33Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - DP-BART for Privatized Text Rewriting under Local Differential Privacy [2.45626162429986]
We propose a new system 'DP-BART' that largely outperforms existing LDP systems.
Our approach uses a novel clipping method, iterative pruning, and further training of internal representations which drastically reduces the amount of noise required for DP guarantees.
arXiv Detail & Related papers (2023-02-15T13:07:34Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
We study the contextual linear bandit problem with differential privacy (DP)
We show that it is possible to achieve a privacy/utility trade-off between JDP and LDP by leveraging the shuffle model of privacy.
Our result shows that it is possible to obtain a tradeoff between JDP and LDP by leveraging the shuffle model while preserving local privacy.
arXiv Detail & Related papers (2021-12-11T15:23:28Z) - Smoothed Differential Privacy [55.415581832037084]
Differential privacy (DP) is a widely-accepted and widely-applied notion of privacy based on worst-case analysis.
In this paper, we propose a natural extension of DP following the worst average-case idea behind the celebrated smoothed analysis.
We prove that any discrete mechanism with sampling procedures is more private than what DP predicts, while many continuous mechanisms with sampling procedures are still non-private under smoothed DP.
arXiv Detail & Related papers (2021-07-04T06:55:45Z) - Differentially Private Representation for NLP: Formal Guarantee and An
Empirical Study on Privacy and Fairness [38.90014773292902]
It has been demonstrated that hidden representation learned by a deep model can encode private information of the input.
We propose Differentially Private Neural Representation (DPNR) to preserve the privacy of the extracted representation from text.
arXiv Detail & Related papers (2020-10-03T05:58:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.