論文の概要: BEAT: Balanced Frequency Adaptive Tuning for Long-Term Time-Series Forecasting
- arxiv url: http://arxiv.org/abs/2501.19065v1
- Date: Fri, 31 Jan 2025 11:52:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:07.206447
- Title: BEAT: Balanced Frequency Adaptive Tuning for Long-Term Time-Series Forecasting
- Title(参考訳): BEAT:長期時系列予測のための平衡周波数適応チューニング
- Authors: Zhixuan Li, Naipeng Chen, Seonghwa Choi, Sanghoon Lee, Weisi Lin,
- Abstract要約: 時系列予測は、天気予報や金融市場モデリングを含む多くの現実世界のアプリケーションにとって不可欠である。
BEAT(Balanced frequency Adaptive Tuning)は、各周波数のトレーニング状況を監視し、勾配更新を適応的に調整する新しいフレームワークである。
BEATは7つの実世界のデータセットの実験において、最先端のアプローチを一貫して上回っている。
- 参考スコア(独自算出の注目度): 46.922741972636025
- License:
- Abstract: Time-series forecasting is crucial for numerous real-world applications including weather prediction and financial market modeling. While temporal-domain methods remain prevalent, frequency-domain approaches can effectively capture multi-scale periodic patterns, reduce sequence dependencies, and naturally denoise signals. However, existing approaches typically train model components for all frequencies under a unified training objective, often leading to mismatched learning speeds: high-frequency components converge faster and risk overfitting, while low-frequency components underfit due to insufficient training time. To deal with this challenge, we propose BEAT (Balanced frEquency Adaptive Tuning), a novel framework that dynamically monitors the training status for each frequency and adaptively adjusts their gradient updates. By recognizing convergence, overfitting, or underfitting for each frequency, BEAT dynamically reallocates learning priorities, moderating gradients for rapid learners and increasing those for slower ones, alleviating the tension between competing objectives across frequencies and synchronizing the overall learning process. Extensive experiments on seven real-world datasets demonstrate that BEAT consistently outperforms state-of-the-art approaches.
- Abstract(参考訳): 時系列予測は、天気予報や金融市場モデリングを含む多くの現実世界のアプリケーションにとって不可欠である。
時間領域の手法は依然として一般的であるが、周波数領域のアプローチは、マルチスケールの周期パターンを効果的にキャプチャし、シーケンス依存を減らし、信号を自然に認知することができる。
しかし、既存のアプローチは通常、統一的なトレーニング目標の下で全ての周波数のモデルコンポーネントを訓練し、しばしばミスマッチした学習速度をもたらす: 高周波コンポーネントは、より早く収束し、リスクオーバーフィットし、低周波コンポーネントは、トレーニング時間不足のために不適当である。
この課題に対処するために、BEAT(Balanced frequency Adaptive Tuning)を提案する。これは、各周波数のトレーニングステータスを動的に監視し、勾配更新を適応的に調整する新しいフレームワークである。
BEATは、各周波数に対する収束、過度な適合、あるいは過度な適合を認識することで、学習優先順位を動的に再配置し、迅速な学習者のための勾配を調整し、より遅い学習者のための勾配を増大させ、周波数間で競合する目標間の緊張を緩和し、全体的な学習プロセスを同期させる。
7つの実世界のデータセットに対する大規模な実験は、BEATが最先端のアプローチを一貫して上回っていることを示している。
関連論文リスト
- Enabling Realtime Reinforcement Learning at Scale with Staggered Asynchronous Inference [22.106900089984318]
エージェントがアクション推論と学習を行う場合であっても、リアルタイム環境は変化する。
機械学習の最近の進歩は、推論時間が長いより大きなニューラルネットワークを含んでいる。
実時間強化学習における後悔に対する低い限界について分析する。
論文 参考訳(メタデータ) (2024-12-18T21:43:40Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
我々はウェーブレットベースのトークンーザを開発し、時間局所化周波数の空間でモデルが複雑な表現を直接学習できるようにする。
提案手法は,まず入力時系列をスケール・分解し,次に閾値を設定し,ウェーブレット係数を定量化し,最後に予測水平方向の係数を予測する自己回帰モデルを事前学習する。
論文 参考訳(メタデータ) (2024-12-06T18:22:59Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - CLeaRForecast: Contrastive Learning of High-Purity Representations for
Time Series Forecasting [2.5816901096123863]
時系列予測(TSF)は現代社会において重要であり、多くの領域にまたがっている。
従来の表現学習に基づくTSFアルゴリズムは、典型的には、分離された傾向周期表現を特徴とする対照的な学習パラダイムを取り入れている。
CLeaRForecastは,高純度時系列表現をサンプル,特徴量,アーキテクチャ浄化手法を用いて学習するための,新しいコントラスト学習フレームワークである。
論文 参考訳(メタデータ) (2023-12-10T04:37:43Z) - Frequency-domain MLPs are More Effective Learners in Time Series
Forecasting [67.60443290781988]
時系列予測は、金融、交通、エネルギー、医療など、さまざまな産業領域において重要な役割を果たしてきた。
最多ベースの予測手法は、ポイントワイドマッピングと情報のボトルネックに悩まされる。
本稿では、時系列予測のための周波数領域上に構築された、シンプルで効果的なアーキテクチャであるFreTSを提案する。
論文 参考訳(メタデータ) (2023-11-10T17:05:13Z) - Phase-shifted Adversarial Training [8.89749787668458]
反応周波数のレンズによる対向訓練の挙動を解析する。
PhaseATは高周波情報の収束を著しく改善する。
これにより、モデルが各データ付近でスムーズな予測を行うことで、対向ロバスト性を向上させることができる。
論文 参考訳(メタデータ) (2023-01-12T02:25:22Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow Learning Networks (FSNet)は、オンライン時系列予測のための総合的なフレームワークである。
FSNetは、最近の変更への迅速な適応と、同様の古い知識の取得のバランスを取る。
私たちのコードは公開されます。
論文 参考訳(メタデータ) (2022-02-23T18:23:07Z) - Investigating Tradeoffs in Real-World Video Super-Resolution [90.81396836308085]
実世界のビデオ超解像(VSR)モデルは、一般化性を改善するために様々な劣化で訓練されることが多い。
最初のトレードオフを軽減するために,性能を犠牲にすることなく,最大40%のトレーニング時間を削減できる劣化手法を提案する。
そこで本研究では,多種多様な実世界の低品質映像系列を含むビデオLQデータセットを提案する。
論文 参考訳(メタデータ) (2021-11-24T18:58:21Z) - Robust Learning with Frequency Domain Regularization [1.370633147306388]
モデルのフィルタの周波数スペクトルを制約し,新しい正規化手法を提案する。
本研究では,(1)対向的摂動を抑えること,(2)異なるアーキテクチャにおける一般化のギャップを小さくすること,(3)微調整を伴わない伝達学習シナリオにおける一般化能力を向上させることによる正規化の有効性を実証する。
論文 参考訳(メタデータ) (2020-07-07T07:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。