論文の概要: CANet: ChronoAdaptive Network for Enhanced Long-Term Time Series Forecasting under Non-Stationarity
- arxiv url: http://arxiv.org/abs/2504.17913v1
- Date: Thu, 24 Apr 2025 20:05:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.56853
- Title: CANet: ChronoAdaptive Network for Enhanced Long-Term Time Series Forecasting under Non-Stationarity
- Title(参考訳): CANet:ChronoAdaptive Network for enhanced Long-Term Time Series Forecasting under non-Stationarity
- Authors: Mert Sonmezer, Seyda Ertekin,
- Abstract要約: 本稿では,スタイル転送技術に触発された新しいアーキテクチャであるChoronoAdaptive Network (CANet)を紹介する。
CANetの中核は非定常適応正規化モジュールであり、スタイルブレンディングゲートと適応インスタンス正規化(AdaIN)をシームレスに統合する。
実世界のデータセットに関する実験は、CANetが最先端の手法よりも優れていることを検証し、MSEの42%、MAEの22%を達成している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Long-term time series forecasting plays a pivotal role in various real-world applications. Despite recent advancements and the success of different architectures, forecasting is often challenging due to non-stationary nature of the real-world data, which frequently exhibit distribution shifts and temporal changes in statistical properties like mean and variance over time. Previous studies suggest that this inherent variability complicates forecasting, limiting the performance of many models by leading to loss of non-stationarity and resulting in over-stationarization (Liu, Wu, Wang and Long, 2022). To address this challenge, we introduce a novel architecture, ChoronoAdaptive Network (CANet), inspired by style-transfer techniques. The core of CANet is the Non-stationary Adaptive Normalization module, seamlessly integrating the Style Blending Gate and Adaptive Instance Normalization (AdaIN) (Huang and Belongie, 2017). The Style Blending Gate preserves and reintegrates non-stationary characteristics, such as mean and standard deviation, by blending internal and external statistics, preventing over-stationarization while maintaining essential temporal dependencies. Coupled with AdaIN, which dynamically adapts the model to statistical changes, this approach enhances predictive accuracy under non-stationary conditions. CANet also employs multi-resolution patching to handle short-term fluctuations and long-term trends, along with Fourier analysis-based adaptive thresholding to reduce noise. A Stacked Kronecker Product Layer further optimizes the model's efficiency while maintaining high performance. Extensive experiments on real-world datasets validate CANet's superiority over state-of-the-art methods, achieving a 42% reduction in MSE and a 22% reduction in MAE. The source code is publicly available at https://github.com/mertsonmezer/CANet.
- Abstract(参考訳): 長期の時系列予測は、様々な現実世界の応用において重要な役割を果たす。
近年の進歩と異なるアーキテクチャの成功にもかかわらず、時間とともに平均や分散のような統計特性の分布変化や時間的変化をしばしば示す現実世界データの非定常的な性質のため、予測はしばしば困難である。
これまでの研究では、この固有変数は予測を複雑にし、非定常性が失われ、超定常化(Liu, Wu, Wang and Long, 2022)をもたらすことで多くのモデルの性能を制限することが示唆された。
この課題に対処するために,スタイル転送技術に触発された新しいアーキテクチャであるChoronoAdaptive Network (CANet)を導入する。
CANetの中核は非定常適応正規化モジュールであり、スタイルブレンディングゲートと適応インスタンス正規化(AdaIN)をシームレスに統合している(Huang and Belongie, 2017)。
スタイルブレンディングゲート(Style Blending Gate)は、平均や標準偏差などの非定常特性を内部統計と外部統計を混在させて保存し再統合し、重要な時間的依存関係を維持しながら過定常化を防ぐ。
統計的変化にモデルを動的に適応させるAdaINと組み合わせることで、非定常条件下での予測精度を向上させる。
CANetはまた、短期間の変動と長期トレンドを扱うためにマルチレゾリューションパッチと、ノイズを低減するためにフーリエ分析に基づく適応しきい値処理を採用している。
Stacked Kronecker Product Layerは、高性能を維持しながらモデルの効率をさらに最適化する。
実世界のデータセットに関する大規模な実験は、CANetが最先端の手法よりも優れていることを検証し、MSEの42%、MAEの22%を達成した。
ソースコードはhttps://github.com/mertsonmezer/CANet.comで公開されている。
関連論文リスト
- HADL Framework for Noise Resilient Long-Term Time Series Forecasting [0.7810572107832383]
長期の時系列予測は、金融、経済、エネルギーといった分野において重要である。
拡張されたルックバックウィンドウにおける時間ノイズの影響は未調査であり、しばしばモデル性能と計算効率を劣化させる。
本稿では、離散ウェーブレット変換(DWT)と離散コサイン変換(DCT)を統合することで、これらの課題に対処する新しいフレームワークを提案する。
提案手法は,ノイズの多い入力に対する競合堅牢性を示し,計算複雑性を著しく低減し,多様なベンチマークデータセット間での競合性ないし最先端の予測性能を実現する。
論文 参考訳(メタデータ) (2025-02-14T21:41:42Z) - Frequency Adaptive Normalization For Non-stationary Time Series Forecasting [7.881136718623066]
時系列予測は、トレンドと季節パターンを進化させる非定常データに対処する必要がある。
非定常性に対処するために、ある統計測度でこの傾向からの影響を軽減するために、最近インスタンス正規化が提案されている。
本稿では、周波数適応正規化(FAN)と呼ばれる新しいインスタンス正規化ソリューションを提案する。
論文 参考訳(メタデータ) (2024-09-30T15:07:16Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
拡散モデルはマルチラウンド・デノナイジングの時間ステップに依存している。
3つの戦略を含む新しい量子化フレームワークを導入する。
このフレームワークは時間情報のほとんどを保存し、高品質なエンドツーエンド生成を保証する。
論文 参考訳(メタデータ) (2024-07-28T17:46:15Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
時系列予測(LTSF)は時系列分析において重要なフロンティアである。
本研究は, 分析的および実証的な証拠から, 分解が過剰なモデルインフレーションを包含する鍵であることを実証する。
興味深いことに、時系列データの本質的なダイナミクスに分解を合わせることで、提案モデルは既存のベンチマークより優れている。
論文 参考訳(メタデータ) (2024-01-22T13:15:40Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
本稿では,CARD(Channel Aligned Robust Blend Transformer)という特殊なトランスを設計する。
まず、CARDはチャネルに沿ったアテンション構造を導入し、信号間の時間的相関をキャプチャする。
第二に、マルチスケール知識を効率的に活用するために、異なる解像度のトークンを生成するトークンブレンドモジュールを設計する。
第3に,潜在的な過度な問題を軽減するため,時系列予測のためのロバストな損失関数を導入する。
論文 参考訳(メタデータ) (2023-05-20T05:16:31Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - TILDE-Q: A Transformation Invariant Loss Function for Time-Series
Forecasting [8.086595073181604]
時系列予測は、エネルギー、天気、交通、経済など、さまざまな領域における現実世界の問題に対処することができる。
時系列予測はよく研究されている分野であり、シーケンシャルデータの急激な変化などの複雑な時間的パターンを予測することは、現在のモデルでは依然として課題となっている。
本稿では, 振幅および位相歪みだけでなく, 時系列列の形状をモデルで捉えることができる, TILDEQ と呼ばれる新しいコンパクトな損失関数を提案する。
論文 参考訳(メタデータ) (2022-10-26T21:32:20Z) - Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System [46.39662315849883]
本稿では,カリキュラム学習とメモリ駆動デコーダによる冗長性を緩和する新しいフレームワークであるCLMFormerを紹介する。
CLMFormerはTransformerベースのモデルを最大30%改善し、長距離予測の有効性を示している。
論文 参考訳(メタデータ) (2022-07-16T04:05:15Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。