SpikingSoft: A Spiking Neuron Controller for Bio-inspired Locomotion with Soft Snake Robots
- URL: http://arxiv.org/abs/2501.19072v2
- Date: Mon, 10 Feb 2025 09:43:34 GMT
- Title: SpikingSoft: A Spiking Neuron Controller for Bio-inspired Locomotion with Soft Snake Robots
- Authors: Chuhan Zhang, Cong Wang, Wei Pan, Cosimo Della Santina,
- Abstract summary: This work explores the possibility of generating locomotion gaits by utilizing physical oscillations in a soft snake.
We introduce the Double Threshold Spiking neuron model with adjustable thresholds to generate varied output patterns.
We demonstrate that our approach, termed SpikingSoft, naturally pairs and integrates with reinforcement learning.
- Score: 9.358725923314006
- License:
- Abstract: Inspired by the dynamic coupling of moto-neurons and physical elasticity in animals, this work explores the possibility of generating locomotion gaits by utilizing physical oscillations in a soft snake by means of a low-level spiking neural mechanism. To achieve this goal, we introduce the Double Threshold Spiking neuron model with adjustable thresholds to generate varied output patterns. This neuron model can excite the natural dynamics of soft robotic snakes, and it enables distinct movements, such as turning or moving forward, by simply altering the neural thresholds. Finally, we demonstrate that our approach, termed SpikingSoft, naturally pairs and integrates with reinforcement learning. The high-level agent only needs to adjust the two thresholds to generate complex movement patterns, thus strongly simplifying the learning of reactive locomotion. Simulation results demonstrate that the proposed architecture significantly enhances the performance of the soft snake robot, enabling it to achieve target objectives with a 21.6% increase in success rate, a 29% reduction in time to reach the target, and smoother movements compared to the vanilla reinforcement learning controllers or Central Pattern Generator controller acting in torque space.
Related papers
- Brain-Body-Task Co-Adaptation can Improve Autonomous Learning and Speed
of Bipedal Walking [0.0]
Inspired by animals that co-adapt their brain and body to interact with the environment, we present a tendon-driven and over-actuated bipedal robot.
We show how continual physical adaptation can be driven by continual physical adaptation rooted in the backdrivable properties of the plant.
arXiv Detail & Related papers (2024-02-04T07:57:52Z) - Learning with Chemical versus Electrical Synapses -- Does it Make a
Difference? [61.85704286298537]
Bio-inspired neural networks have the potential to advance our understanding of neural computation and improve the state-of-the-art of AI systems.
We conduct experiments with autonomous lane-keeping through a photorealistic autonomous driving simulator to evaluate their performance under diverse conditions.
arXiv Detail & Related papers (2023-11-21T13:07:20Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
We show that it is pivotal in increasing controller robustness by learning a latent space capturing the key stance phases constituting a particular gait.
We demonstrate that specific properties of the drive signal map directly to gait parameters such as cadence, footstep height and full stance duration.
The use of a generative model facilitates the detection and mitigation of disturbances to provide a versatile and robust planning framework.
arXiv Detail & Related papers (2022-05-02T19:49:53Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Learning Control Policies for Imitating Human Gaits [2.28438857884398]
Humans exhibit movements like walking, running, and jumping in the most efficient manner, which served as the source of motivation for this project.
Skeletal and Musculoskeletal human models were considered for motions in the sagittal plane.
Model-free reinforcement learning algorithms were used to optimize inverse dynamics control actions.
arXiv Detail & Related papers (2021-05-15T16:33:24Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
Spiking Central Pattern Generator generates different locomotion patterns driven by an external stimulus.
The locomotion of the end robotic platform (any-legged robot) can be adapted to the terrain by using any sensor as input.
arXiv Detail & Related papers (2021-01-24T12:44:38Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
Legged locomotion can dramatically expand the operational domains of robotics.
Conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes.
Here we present a radically robust controller for legged locomotion in challenging natural environments.
arXiv Detail & Related papers (2020-10-21T19:11:20Z) - Control for Multifunctionality: Bioinspired Control Based on Feeding in
Aplysia californica [0.3277163122167433]
We develop a hybrid Boolean model framework capable of modeling neural bursting activity and simple biomechanics at speeds faster than real time.
We present a multifunctional model of Aplysia californica feeding that qualitatively reproduces three key feeding behaviors.
We demonstrate that the model can be used for formulating testable hypotheses and discuss the implications of this approach for robotic control and neuroscience.
arXiv Detail & Related papers (2020-08-11T19:26:50Z) - Learning to Locomote with Deep Neural-Network and CPG-based Control in a
Soft Snake Robot [19.80726424244039]
We present a new locomotion control method for soft robot snakes inspired by biological snakes.
The performance of the proposed controller is experimentally validated with both simulated and real soft snake robots.
arXiv Detail & Related papers (2020-01-13T04:32:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.