Learning to Locomote with Deep Neural-Network and CPG-based Control in a
Soft Snake Robot
- URL: http://arxiv.org/abs/2001.04059v2
- Date: Mon, 2 Mar 2020 20:45:19 GMT
- Title: Learning to Locomote with Deep Neural-Network and CPG-based Control in a
Soft Snake Robot
- Authors: Xuan Liu, Renato Gasoto, Cagdas Onal, Jie Fu
- Abstract summary: We present a new locomotion control method for soft robot snakes inspired by biological snakes.
The performance of the proposed controller is experimentally validated with both simulated and real soft snake robots.
- Score: 19.80726424244039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a new locomotion control method for soft robot
snakes. Inspired by biological snakes, our control architecture is composed of
two key modules: A deep reinforcement learning (RL) module for achieving
adaptive goal-tracking behaviors with changing goals, and a central pattern
generator (CPG) system with Matsuoka oscillators for generating stable and
diverse locomotion patterns. The two modules are interconnected into a
closed-loop system: The RL module, analogizing the locomotion region located in
the midbrain of vertebrate animals, regulates the input to the CPG system given
state feedback from the robot. The output of the CPG system is then translated
into pressure inputs to pneumatic actuators of the soft snake robot. Based on
the fact that the oscillation frequency and wave amplitude of the Matsuoka
oscillator can be independently controlled under different time scales, we
further adapt the option-critic framework to improve the learning performance
measured by optimality and data efficiency. The performance of the proposed
controller is experimentally validated with both simulated and real soft snake
robots.
Related papers
- Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
Multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves.
These complex devices need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves.
In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics.
arXiv Detail & Related papers (2024-04-17T02:04:10Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Combining model-predictive control and predictive reinforcement learning
for stable quadrupedal robot locomotion [0.0]
We study how this can be achieved by a combination of model-predictive and predictive reinforcement learning controllers.
In this work, we combine both control methods to address the quadrupedal robot stable gate generation problem.
arXiv Detail & Related papers (2023-07-15T09:22:37Z) - DeepCPG Policies for Robot Locomotion [1.0057838324294686]
novel DeepCPG policies that embed CPGs as a layer in a larger neural network.
We show that, compared to traditional approaches, DeepCPG policies allow sample-efficient end-to-end learning of effective locomotion strategies.
Results suggest that gradual complexification with embedded priors of these policies in a modular fashion could achieve non-trivial sensor and motor integration on a robot platform.
arXiv Detail & Related papers (2023-02-25T23:16:57Z) - Bayesian Optimization Meets Hybrid Zero Dynamics: Safe Parameter
Learning for Bipedal Locomotion Control [17.37169551675587]
We propose a multi-domain control parameter learning framework for locomotion control of bipedal robots.
We leverage BO to learn the control parameters used in the HZD-based controller.
Next, the learning process is applied on the physical robot to learn for corrections to the control parameters learned in simulation.
arXiv Detail & Related papers (2022-03-04T20:48:17Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
Spiking Central Pattern Generator generates different locomotion patterns driven by an external stimulus.
The locomotion of the end robotic platform (any-legged robot) can be adapted to the terrain by using any sensor as input.
arXiv Detail & Related papers (2021-01-24T12:44:38Z) - A Spiking Central Pattern Generator for the control of a simulated
lamprey robot running on SpiNNaker and Loihi neuromorphic boards [1.8139771201780368]
We propose a spiking neural network and its implementation on neuromorphic hardware as a means to control a simulated lamprey model.
We show that by modifying the input to the network, which can be provided by sensory information, the robot can be controlled dynamically in direction and pace.
This category of spiking algorithms shows a promising potential to exploit the theoretical advantages of neuromorphic hardware in terms of energy efficiency and computational speed.
arXiv Detail & Related papers (2021-01-18T11:04:16Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
We present a framework that synthesizes robust controllers for a quadruped robot.
A high-level controller learns to choose from a set of primitives in response to changes in the environment.
A low-level controller that utilizes an established control method to robustly execute the primitives.
arXiv Detail & Related papers (2020-09-21T16:49:26Z) - Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped [64.64924554743982]
We present a framework for implementing central pattern generators with spiking neural networks to obtain closed loop robot control.
We demonstrate the learning of predefined gait patterns, speed control and gait transition on a simulated model of a compliant quadrupedal robot.
arXiv Detail & Related papers (2020-04-09T14:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.