論文の概要: FL-APU: A Software Architecture to Ease Practical Implementation of Cross-Silo Federated Learning
- arxiv url: http://arxiv.org/abs/2501.19091v1
- Date: Fri, 31 Jan 2025 12:37:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 13:58:14.929920
- Title: FL-APU: A Software Architecture to Ease Practical Implementation of Cross-Silo Federated Learning
- Title(参考訳): FL-APU: クロスサイロ・フェデレーション・ラーニングの実践的実装を可能にするソフトウェアアーキテクチャ
- Authors: F. Stricker, J. A. Peregrina, D. Bermbach, C. Zirpins,
- Abstract要約: Federated Learning(FL)は、現実世界のアプリケーションにますます適用されつつある技術である。
本稿では,機械学習モデルの品質向上のために,複数の企業が共同で作業する中でFLを実用化するためのシナリオベースアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Federated Learning (FL) is an upcoming technology that is increasingly applied in real-world applications. Early applications focused on cross-device scenarios, where many participants with limited resources train machine learning (ML) models together, e.g., in the case of Google's GBoard. Contrarily, cross-silo scenarios have only few participants but with many resources, e.g., in the healthcare domain. Despite such early efforts, FL is still rarely used in practice and best practices are, hence, missing. For new applications, in our case inter-organizational cross-silo applications, overcoming this lack of role models is a significant challenge. In order to ease the use of FL in real-world cross-silo applications, we here propose a scenario-based architecture for the practical use of FL in the context of multiple companies collaborating to improve the quality of their ML models. The architecture emphasizes the collaboration between the participants and the FL server and extends basic interactions with domain-specific features. First, it combines governance with authentication, creating an environment where only trusted participants can join. Second, it offers traceability of governance decisions and tracking of training processes, which are also crucial in a production environment. Beyond presenting the architectural design, we analyze requirements for the real-world use of FL and evaluate the architecture with a scenario-based analysis method.
- Abstract(参考訳): Federated Learning(FL)は、現実世界のアプリケーションにますます適用されつつある技術である。
初期のアプリケーションはクロスデバイスシナリオに重点を置いていた。GoogleのGBoardの場合、限られたリソースを持つ多くの参加者が機械学習(ML)モデルを一緒にトレーニングする。
対照的に、クロスサイロシナリオには、ごくわずかの参加者しかいないが、ヘルスケアドメインなど、多くのリソースがある。
このような初期の努力にもかかわらず、FLはいまだに実践に使われておらず、ベストプラクティスが欠落している。
新しいアプリケーションにとって、組織間クロスサイロアプリケーションの場合、このような役割モデルの欠如を克服することは大きな課題です。
本稿では,実世界のクロスサイロアプリケーションにおけるFLの利用を容易にするため,複数の企業が協調してMLモデルの品質向上を図る中で,FLの実用化のためのシナリオベースアーキテクチャを提案する。
アーキテクチャは、参加者とFLサーバの協調を強調し、ドメイン固有の機能との基本的な相互作用を拡張します。
まず、ガバナンスと認証を組み合わせることで、信頼できる参加者だけが参加できる環境を構築する。
第2に、ガバナンス決定のトレーサビリティと、本番環境においても重要なトレーニングプロセスの追跡を提供する。
アーキテクチャ設計の提示以外にも,FLの実際の使用要件を分析し,シナリオベースの分析手法を用いてアーキテクチャを評価する。
関連論文リスト
- Federated Learning in Practice: Reflections and Projections [17.445826363802997]
Federated Learning(FL)は、複数のエンティティがローカルデータを交換することなく、共同で共有モデルを学ぶことができる機械学習技術である。
Google、Apple、Metaといった組織によるプロダクションシステムは、FLの現実的な適用性を実証しています。
我々は、厳密な定義よりもプライバシー原則を優先する再定義されたFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-11T15:10:38Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
論文 参考訳(メタデータ) (2024-01-09T10:22:23Z) - An Empirical Study of Federated Learning on IoT-Edge Devices: Resource
Allocation and Heterogeneity [2.055204980188575]
Federated Learning(FL)は、単一のサーバと複数のクライアントがクライアントからデータを移動することなく、協調してMLモデルを構築する分散アプローチである。
本研究では,IoTとエッジデバイス(IoT-Edgeデバイスと呼ばれる)の大規模ネットワーク上で,FLの実環境特性を示す大規模な実験を系統的に実施する。
論文 参考訳(メタデータ) (2023-05-31T13:16:07Z) - Hierarchical and Decentralised Federated Learning [3.055801139718484]
階層的フェデレーション学習は、より効率的なモデルアグリゲーションを可能にするために、従来のFLプロセスを拡張します。
パフォーマンスの向上とコスト削減に加えて,従来のFLに適さない環境にFLをデプロイすることも可能だ。
H-FLは、局所性依存とグローバルな異常なロバスト性の間のトレードオフを最適に果たすために、複数のレベルでモデルを集約し、配布することができるので、将来のFLソリューションにとって不可欠である。
論文 参考訳(メタデータ) (2023-04-28T17:06:50Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL)は、ローカルデータをアップロードすることなく、分散クライアントと協調して高品質なモデルをトレーニングすることを目的としている。
FL研究と実世界のシナリオの間には依然としてかなりのギャップがあり、主に異種デバイスの特徴とそのスケールによって引き起こされている。
本稿では,実世界横断デバイスFL,FS-Realのための効率的でスケーラブルなプロトタイピングシステムを提案する。
論文 参考訳(メタデータ) (2023-03-23T15:37:17Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - FederatedScope: A Comprehensive and Flexible Federated Learning Platform
via Message Passing [63.87056362712879]
我々は,メッセージ指向フレームワークを基盤とした,新しい総合的なフェデレート学習プラットフォームであるFederatedScopeを提案する。
手続き型フレームワークと比較して、提案されたメッセージ指向フレームワークは異種メッセージ交換を表現するのに柔軟である。
我々は、FederatedScopeの正確性と効率性を検証するために、提供された簡易かつ包括的なFLベンチマークについて一連の実験を行った。
論文 参考訳(メタデータ) (2022-04-11T11:24:21Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
フェデレートラーニング(FL)は、複数の参加者が生データを共有せずに学習をコラボレーションするための分散ラーニングフレームワークを提供する。
本稿では, モデルサイズとロバスト性をその場でカスタマイズできる, 不均一な参加者のための新しいスプリット・ミクス・FL戦略を提案する。
論文 参考訳(メタデータ) (2022-03-18T04:58:34Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - FLaaS: Federated Learning as a Service [3.128267020893596]
我々は、サードパーティのアプリケーション協調モデル構築のさまざまなシナリオを可能にするシステムであるフェデレートラーニング・アズ・ア・サービス(FL)について紹介する。
概念実証として,携帯電話上で実装し,シミュレーションおよび実機における結果の実用的意味について議論する。
100台のデバイスで数時間で画像オブジェクト検出を行うアプリケーションにまたがる、ユニークなFLモデルやジョイントFLモデルの構築において、FLが実現可能であることを実証する。
論文 参考訳(メタデータ) (2020-11-18T15:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。