Improving Low-Resource Sequence Labeling with Knowledge Fusion and Contextual Label Explanations
- URL: http://arxiv.org/abs/2501.19093v2
- Date: Thu, 13 Feb 2025 05:32:21 GMT
- Title: Improving Low-Resource Sequence Labeling with Knowledge Fusion and Contextual Label Explanations
- Authors: Peichao Lai, Jiaxin Gan, Feiyang Ye, Yilei Wang, Bin Cui,
- Abstract summary: Sequence labeling remains a significant challenge in low-resource, domain-specific scenarios.
We propose a novel framework that combines an LLM-based knowledge enhancement workflow with a span-based Knowledge Fusion for Rich and Efficient Extraction model.
Our approach achieves state-of-the-art performance, effectively addressing the challenges posed by low-resource settings.
- Score: 20.175880825346397
- License:
- Abstract: Sequence labeling remains a significant challenge in low-resource, domain-specific scenarios, particularly for character-dense languages like Chinese. Existing methods primarily focus on enhancing model comprehension and improving data diversity to boost performance. However, these approaches still struggle with inadequate model applicability and semantic distribution biases in domain-specific contexts. To overcome these limitations, we propose a novel framework that combines an LLM-based knowledge enhancement workflow with a span-based Knowledge Fusion for Rich and Efficient Extraction (KnowFREE) model. Our workflow employs explanation prompts to generate precise contextual interpretations of target entities, effectively mitigating semantic biases and enriching the model's contextual understanding. The KnowFREE model further integrates extension label features, enabling efficient nested entity extraction without relying on external knowledge during inference. Experiments on multiple Chinese domain-specific sequence labeling datasets demonstrate that our approach achieves state-of-the-art performance, effectively addressing the challenges posed by low-resource settings.
Related papers
- Refining Sentence Embedding Model through Ranking Sentences Generation with Large Language Models [60.00178316095646]
Sentence embedding is essential for many NLP tasks, with contrastive learning methods achieving strong performance using datasets like NLI.
Recent studies leverage large language models (LLMs) to generate sentence pairs, reducing annotation dependency.
We propose a method for controlling the generation direction of LLMs in the latent space. Unlike unconstrained generation, the controlled approach ensures meaningful semantic divergence.
Experiments on multiple benchmarks demonstrate that our method achieves new SOTA performance with a modest cost in ranking sentence synthesis.
arXiv Detail & Related papers (2025-02-19T12:07:53Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - An Effective Deployment of Diffusion LM for Data Augmentation in Low-Resource Sentiment Classification [2.0930389307057427]
Sentiment classification (SC) often suffers from low-resource challenges such as domain-specific contexts, imbalanced label distributions, and few-shot scenarios.
We propose Diffusion LM to capture in-domain knowledge and generate pseudo samples by reconstructing strong label-related tokens.
arXiv Detail & Related papers (2024-09-05T02:51:28Z) - CLLMFS: A Contrastive Learning enhanced Large Language Model Framework for Few-Shot Named Entity Recognition [3.695767900907561]
CLLMFS is a Contrastive Learning enhanced Large Language Model framework for Few-Shot Named Entity Recognition.
It integrates Low-Rank Adaptation (LoRA) and contrastive learning mechanisms specifically tailored for few-shot NER.
Our method has achieved state-of-the-art performance improvements on F1-score ranging from 2.58% to 97.74% over existing best-performing methods.
arXiv Detail & Related papers (2024-08-23T04:44:05Z) - Assessing the Performance of Chinese Open Source Large Language Models in Information Extraction Tasks [12.400599440431188]
Information Extraction (IE) plays a crucial role in Natural Language Processing (NLP)
Recent experiments focusing on English IE tasks have shed light on the challenges faced by Large Language Models (LLMs) in achieving optimal performance.
arXiv Detail & Related papers (2024-06-04T08:00:40Z) - LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named
Entity Recognition [67.96794382040547]
$LLM-DA$ is a novel data augmentation technique based on large language models (LLMs) for the few-shot NER task.
Our approach involves employing 14 contextual rewriting strategies, designing entity replacements of the same type, and incorporating noise injection to enhance robustness.
arXiv Detail & Related papers (2024-02-22T14:19:56Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - Modeling Multi-Granularity Hierarchical Features for Relation Extraction [26.852869800344813]
We propose a novel method to extract multi-granularity features based solely on the original input sentences.
We show that effective structured features can be attained even without external knowledge.
arXiv Detail & Related papers (2022-04-09T09:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.