An Effective Deployment of Diffusion LM for Data Augmentation in Low-Resource Sentiment Classification
- URL: http://arxiv.org/abs/2409.03203v2
- Date: Mon, 23 Sep 2024 12:39:34 GMT
- Title: An Effective Deployment of Diffusion LM for Data Augmentation in Low-Resource Sentiment Classification
- Authors: Zhuowei Chen, Lianxi Wang, Yuben Wu, Xinfeng Liao, Yujia Tian, Junyang Zhong,
- Abstract summary: Sentiment classification (SC) often suffers from low-resource challenges such as domain-specific contexts, imbalanced label distributions, and few-shot scenarios.
We propose Diffusion LM to capture in-domain knowledge and generate pseudo samples by reconstructing strong label-related tokens.
- Score: 2.0930389307057427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment classification (SC) often suffers from low-resource challenges such as domain-specific contexts, imbalanced label distributions, and few-shot scenarios. The potential of the diffusion language model (LM) for textual data augmentation (DA) remains unexplored, moreover, textual DA methods struggle to balance the diversity and consistency of new samples. Most DA methods either perform logical modifications or rephrase less important tokens in the original sequence with the language model. In the context of SC, strong emotional tokens could act critically on the sentiment of the whole sequence. Therefore, contrary to rephrasing less important context, we propose DiffusionCLS to leverage a diffusion LM to capture in-domain knowledge and generate pseudo samples by reconstructing strong label-related tokens. This approach ensures a balance between consistency and diversity, avoiding the introduction of noise and augmenting crucial features of datasets. DiffusionCLS also comprises a Noise-Resistant Training objective to help the model generalize. Experiments demonstrate the effectiveness of our method in various low-resource scenarios including domain-specific and domain-general problems. Ablation studies confirm the effectiveness of our framework's modules, and visualization studies highlight optimal deployment conditions, reinforcing our conclusions.
Related papers
- Diffusion Features to Bridge Domain Gap for Semantic Segmentation [2.8616666231199424]
This paper investigates the approach that leverages the sampling and fusion techniques to harness the features of diffusion models efficiently.
By leveraging the strength of text-to-image generation capability, we introduce a new training framework designed to implicitly learn posterior knowledge from it.
arXiv Detail & Related papers (2024-06-02T15:33:46Z) - Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations [61.132408427908175]
zero-shot GAN adaptation aims to reuse well-trained generators to synthesize images of an unseen target domain.
With only a single representative text feature instead of real images, the synthesized images gradually lose diversity.
We propose a novel method to find semantic variations of the target text in the CLIP space.
arXiv Detail & Related papers (2023-08-21T08:12:28Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised Domain
Adaptation [20.589323508870592]
Semi-supervised domain adaptation (SSDA) adapts a learner to a new domain by effectively utilizing source domain data and a few labeled target samples.
We show that the proposed model significantly outperforms SOTA methods in terms of effectiveness and generalisability on SSDA datasets.
arXiv Detail & Related papers (2023-03-30T16:48:28Z) - Identifiable Latent Causal Content for Domain Adaptation under Latent Covariate Shift [82.14087963690561]
Multi-source domain adaptation (MSDA) addresses the challenge of learning a label prediction function for an unlabeled target domain.
We present an intricate causal generative model by introducing latent noises across domains, along with a latent content variable and a latent style variable.
The proposed approach showcases exceptional performance and efficacy on both simulated and real-world datasets.
arXiv Detail & Related papers (2022-08-30T11:25:15Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
We propose a novel approach to identify meaningful and independent factors of variation in a dataset.
Our method involves two separate latent subspaces for the target property and the remaining input information.
We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models.
arXiv Detail & Related papers (2021-11-25T17:33:12Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.