論文の概要: PathE: Leveraging Entity-Agnostic Paths for Parameter-Efficient Knowledge Graph Embeddings
- arxiv url: http://arxiv.org/abs/2501.19095v1
- Date: Fri, 31 Jan 2025 12:41:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:06.601900
- Title: PathE: Leveraging Entity-Agnostic Paths for Parameter-Efficient Knowledge Graph Embeddings
- Title(参考訳): PathE: パラメータ効率の良い知識グラフ埋め込みのためのエンティティ非依存パスの活用
- Authors: Ioannis Reklos, Jacopo de Berardinis, Elena Simperl, Albert Meroño-Peñuela,
- Abstract要約: 知識グラフ(KG)に関係を埋め込むモデルPathEを提案する。
エンティティの埋め込みを格納するのではなく、複数のエンティティ-リレーショナルパスを活用することで、それらを計算することを学ぶ。
PathEは、現実世界のアプリケーションでよく見られる、リレーショナルに多様性があり、十分に接続されたKGに対して効率的で費用対効果がある。
- 参考スコア(独自算出の注目度): 2.644991336881551
- License:
- Abstract: Knowledge Graphs (KGs) store human knowledge in the form of entities (nodes) and relations, and are used extensively in various applications. KG embeddings are an effective approach to addressing tasks like knowledge discovery, link prediction, and reasoning. This is often done by allocating and learning embedding tables for all or a subset of the entities. As this scales linearly with the number of entities, learning embedding models in real-world KGs with millions of nodes can be computationally intractable. To address this scalability problem, our model, PathE, only allocates embedding tables for relations (which are typically orders of magnitude fewer than the entities) and requires less than 25% of the parameters of previous parameter efficient methods. Rather than storing entity embeddings, we learn to compute them by leveraging multiple entity-relation paths to contextualise individual entities within triples. Evaluated on four benchmarks, PathE achieves state-of-the-art performance in relation prediction, and remains competitive in link prediction on path-rich KGs while training on consumer-grade hardware. We perform ablation experiments to test our design choices and analyse the sensitivity of the model to key hyper-parameters. PathE is efficient and cost-effective for relationally diverse and well-connected KGs commonly found in real-world applications.
- Abstract(参考訳): 知識グラフ(KG)は、人間の知識をエンティティ(ノード)と関係の形で格納し、様々なアプリケーションで広く使われている。
KG埋め込みは、知識発見、リンク予測、推論といったタスクに対処するための効果的なアプローチである。
これはしばしば、すべてのエンティティまたはサブセットの埋め込みテーブルを割り当てて学習することによって行われる。
これはエンティティの数と線形にスケールするので、数百万のノードを持つ実世界のKGに埋め込みモデルを学習することは、計算的に難解である。
このスケーラビリティ問題に対処するために、我々のモデルであるPathEは、(通常エンティティよりも桁違いに少ない)関係の埋め込みテーブルのみを割り当て、従来のパラメータ効率の手法のパラメータの25%未満を必要とします。
エンティティ埋め込みを格納するのではなく、複数のエンティティ関連パスを活用して、個々のエンティティをトリプル内でコンテキスト化することで、それらを計算することを学ぶ。
PathEは4つのベンチマークで評価され、関係予測における最先端のパフォーマンスを達成し、コンシューマグレードハードウェアのトレーニング中にパスリッチなKGのリンク予測において競争力を維持している。
我々は、設計選択を検証し、モデルの感度をキーハイパーパラメータに解析するためにアブレーション実験を行う。
PathEは、現実世界のアプリケーションでよく見られる、リレーショナルに多様性があり、十分に接続されたKGに対して効率的で費用対効果がある。
関連論文リスト
- Efficient Relational Context Perception for Knowledge Graph Completion [25.903926643251076]
知識グラフ(KG)は知識の構造化された表現を提供するが、しばしば不完全性の課題に悩まされる。
従来の知識グラフ埋め込みモデルは、表現力のある特徴を捉える能力に制限がある。
逐次情報をモデル化し,動的文脈の学習を可能にする三重受容アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-12-31T11:25:58Z) - A Contextualized BERT model for Knowledge Graph Completion [0.0]
知識グラフ補完(KGC)のためのコンテキスト化BERTモデルを提案する。
本モデルでは,エンティティ記述や負の三重項サンプリングの必要性を排除し,計算要求を低減し,性能を向上する。
FB15k-237とWN18RRでは,Hit@1が5.3%向上し,4.88%向上した。
論文 参考訳(メタデータ) (2024-12-15T02:03:16Z) - Entity-Agnostic Representation Learning for Parameter-Efficient
Knowledge Graph Embedding [30.7075844882004]
本稿では,知識グラフの埋め込みによる非効率なパラメータ記憶コストの問題に対処するエンティティに依存しない表現学習手法を提案する。
我々は、識別可能な情報をエンティティ埋め込みに変換するために、普遍的でエンティティに依存しないエンコーダを学習する。
実験の結果,EARLはパラメータが少なく,ベースラインよりもリンク予測タスクが優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T16:49:46Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Entity Alignment with Reliable Path Reasoning and Relation-Aware
Heterogeneous Graph Transformer [5.960613525368867]
本稿では,関係と経路構造情報を統合したより効果的なエンティティアライメントフレームワークRPR-RHGTを提案する。
知識グラフの関係構造からEAタスクに適した経路を生成するために,初期信頼経路推論アルゴリズムを開発した。
実体近傍における異種特徴を効率的に捉えるために、関係性を考慮した異種グラフ変換器を設計する。
論文 参考訳(メタデータ) (2022-05-18T09:12:37Z) - PIE: a Parameter and Inference Efficient Solution for Large Scale
Knowledge Graph Embedding Reasoning [24.29409958504209]
PIE, textbfparameter および textbfinference textbfefficient ソリューションを提案する。
テンソル分解法から着想を得た結果, 要素埋め込み行列を低階行列に分解することで, パラメータの半数以上を削減できることがわかった。
モデル推論を高速化するために,よりきめ細かなエンティティタイピングのように見える自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2022-04-29T09:06:56Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
ケースベース推論(CBR)システムは,与えられた問題に類似した事例を検索することで,新たな問題を解決する。
本稿では,知識ベース(KB)の推論において,そのようなシステムが実現可能であることを示す。
提案手法は,KB内の類似エンティティからの推論パスを収集することにより,エンティティの属性を予測する。
論文 参考訳(メタデータ) (2020-10-07T17:48:12Z) - Exploring and Evaluating Attributes, Values, and Structures for Entity
Alignment [100.19568734815732]
エンティティアライメント(EA)は、さまざまなKGから等価なエンティティをリンクすることで、リッチコンテンツの統合知識グラフ(KG)を構築することを目的としている。
属性・トリプルは重要なアライメント信号も提供できますが、まだ十分に調査されていません。
本稿では,属性値エンコーダを用いてKGをサブグラフに分割し,属性の様々なタイプを効率的にモデル化することを提案する。
論文 参考訳(メタデータ) (2020-10-07T08:03:58Z) - Joint Semantics and Data-Driven Path Representation for Knowledge Graph
Inference [60.048447849653876]
我々は,KG埋め込みの枠組みにおける説明可能性と一般化のバランスをとる,新しい共同意味論とデータ駆動経路表現を提案する。
提案手法はリンク予測と経路問合せ応答という2つのタスクのクラスで評価される。
論文 参考訳(メタデータ) (2020-10-06T10:24:45Z) - A Simple Approach to Case-Based Reasoning in Knowledge Bases [56.661396189466664]
我々は,古典人工知能(AI)におけるケースベース推論を想起させる,アンフノトレーニングを必要とする知識グラフ(KG)における推論に対する驚くほど単純かつ正確なアプローチを提案する。
ソースエンティティとバイナリ関係が与えられたターゲットエンティティを見つけるタスクを考えてみましょう。
我々の非パラメトリックなアプローチは、与えられた関係を通して類似したソースエンティティを接続する複数のテキストトグラフパスパターンを見つけることによって、クエリ毎にクレープな論理ルールを導出します。
論文 参考訳(メタデータ) (2020-06-25T06:28:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。