Relating Misfit to Gain in Weak-to-Strong Generalization Beyond the Squared Loss
- URL: http://arxiv.org/abs/2501.19105v2
- Date: Mon, 03 Feb 2025 20:44:05 GMT
- Title: Relating Misfit to Gain in Weak-to-Strong Generalization Beyond the Squared Loss
- Authors: Abhijeet Mulgund, Chirag Pabbaraju,
- Abstract summary: We study weak-to-strong generalization for convex combinations of $k$ strong models in the strong class.
We obtain a similar misfit-based characterization of performance gain, upto an additional error term that vanishes as $k$ gets large.
- Score: 4.4505368723466585
- License:
- Abstract: The paradigm of weak-to-strong generalization constitutes the training of a strong AI model on data labeled by a weak AI model, with the goal that the strong model nevertheless outperforms its weak supervisor on the target task of interest. For the setting of real-valued regression with the squared loss, recent work quantitatively characterizes the gain in performance of the strong model over the weak model in terms of the misfit between the strong and weak model. We generalize such a characterization to learning tasks whose loss functions correspond to arbitrary Bregman divergences when the strong class is convex. This extends the misfit-based characterization of performance gain in weak-to-strong generalization to classification tasks, as the cross-entropy loss can be expressed in terms of a Bregman divergence. In most practical scenarios, however, the strong model class may not be convex. We therefore weaken this assumption and study weak-to-strong generalization for convex combinations of $k$ strong models in the strong class, in the concrete setting of classification. This allows us to obtain a similar misfit-based characterization of performance gain, upto an additional error term that vanishes as $k$ gets large. Our theoretical findings are supported by thorough experiments on synthetic as well as real-world datasets.
Related papers
- Understanding the Capabilities and Limitations of Weak-to-Strong Generalization [40.793180521446466]
We provide theoretical insights into weak-to-strong generalization.
We show that the weak model should demonstrate strong generalization performance and maintain well-calibrated predictions.
We extend the work of Charikar et al. (2024) to a loss function based on Kullback-Leibler divergence.
arXiv Detail & Related papers (2025-02-03T15:48:28Z) - Synthetic Feature Augmentation Improves Generalization Performance of Language Models [8.463273762997398]
Training and fine-tuning deep learning models on limited and imbalanced datasets poses substantial challenges.
We propose augmenting features in the embedding space by generating synthetic samples using a range of techniques.
We validate the effectiveness of this approach across multiple open-source text classification benchmarks.
arXiv Detail & Related papers (2025-01-11T04:31:18Z) - A Robust Adversarial Ensemble with Causal (Feature Interaction) Interpretations for Image Classification [9.945272787814941]
We present a deep ensemble model that combines discriminative features with generative models to achieve both high accuracy and adversarial robustness.
Our approach integrates a bottom-level pre-trained discriminative network for feature extraction with a top-level generative classification network that models adversarial input distributions.
arXiv Detail & Related papers (2024-12-28T05:06:20Z) - On the KL-Divergence-based Robust Satisficing Model [2.425685918104288]
robustness satisficing framework has attracted increasing attention from academia.
We present analytical interpretations, diverse performance guarantees, efficient and stable numerical methods, convergence analysis, and an extension tailored for hierarchical data structures.
We demonstrate the superior performance of our model compared to state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-08-17T10:05:05Z) - Super(ficial)-alignment: Strong Models May Deceive Weak Models in Weak-to-Strong Generalization [68.62228569439478]
We investigate whether there exists an issue of weak-to-strong deception.
We find that the deception intensifies as the capability gap between weak and strong models increases.
Our work highlights the urgent need to pay more attention to the true reliability of superalignment.
arXiv Detail & Related papers (2024-06-17T11:36:39Z) - Quantifying the Gain in Weak-to-Strong Generalization [14.453654853392619]
We show that the improvement in performance achieved by strong models over their weaker counterparts is quantified by the misfit error incurred by the strong model on labels generated by the weaker model.
For instance, we can predict the amount by which the strong model will improve over the weak model, and also choose among different weak models to train the strong model, based on its misfit error.
arXiv Detail & Related papers (2024-05-24T00:14:16Z) - Vision Superalignment: Weak-to-Strong Generalization for Vision
Foundation Models [55.919653720979824]
This paper focuses on the concept of weak-to-strong generalization, which involves using a weaker model to supervise a stronger one.
We introduce a novel and adaptively adjustable loss function for weak-to-strong supervision.
Our approach not only exceeds the performance benchmarks set by strong-to-strong generalization but also surpasses the outcomes of fine-tuning strong models with whole datasets.
arXiv Detail & Related papers (2024-02-06T06:30:34Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
We propose a novel understanding of adversarial robustness and apply it on more tasks including domain adaption and robustness boosting.
Experimental evaluations demonstrate the rationality and superiority of our proposed clustering strategy.
arXiv Detail & Related papers (2021-11-25T05:51:03Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.