論文の概要: Medical Semantic Segmentation with Diffusion Pretrain
- arxiv url: http://arxiv.org/abs/2501.19265v1
- Date: Fri, 31 Jan 2025 16:25:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:50.268134
- Title: Medical Semantic Segmentation with Diffusion Pretrain
- Title(参考訳): Diffusion Pretrain による医用セマンティックセマンティックセグメンテーション
- Authors: David Li, Anvar Kurmukov, Mikhail Goncharov, Roman Sokolov, Mikhail Belyaev,
- Abstract要約: 近年のディープラーニングの進歩は、多くのコンピュータビジョンタスクの成功にロバストな特徴表現の学習が不可欠であることを示している。
本稿では,3次元医用画像データの複雑化に合わせて,解剖学的ガイダンスを持つ拡散モデルを用いた新しい事前学習戦略を提案する。
拡散過程において3次元の普遍的な身体部分座標を予測しガイダンスを与えるモデルを用いる。
- 参考スコア(独自算出の注目度): 1.9415817267757087
- License:
- Abstract: Recent advances in deep learning have shown that learning robust feature representations is critical for the success of many computer vision tasks, including medical image segmentation. In particular, both transformer and convolutional-based architectures have benefit from leveraging pretext tasks for pretraining. However, the adoption of pretext tasks in 3D medical imaging has been less explored and remains a challenge, especially in the context of learning generalizable feature representations. We propose a novel pretraining strategy using diffusion models with anatomical guidance, tailored to the intricacies of 3D medical image data. We introduce an auxiliary diffusion process to pretrain a model that produce generalizable feature representations, useful for a variety of downstream segmentation tasks. We employ an additional model that predicts 3D universal body-part coordinates, providing guidance during the diffusion process and improving spatial awareness in generated representations. This approach not only aids in resolving localization inaccuracies but also enriches the model's ability to understand complex anatomical structures. Empirical validation on a 13-class organ segmentation task demonstrate the effectiveness of our pretraining technique. It surpasses existing restorative pretraining methods in 3D medical image segmentation by $7.5\%$, and is competitive with the state-of-the-art contrastive pretraining approach, achieving an average Dice coefficient of 67.8 in a non-linear evaluation scenario.
- Abstract(参考訳): 近年のディープラーニングの進歩は、堅牢な特徴表現の学習が、医用画像セグメンテーションを含む多くのコンピュータビジョンタスクの成功に不可欠であることを示している。
特に、トランスフォーマーと畳み込みベースのアーキテクチャは、事前トレーニングにプリテキストタスクを活用する利点がある。
しかし、3次元医用画像におけるプリテキストタスクの採用は研究が進んでおらず、特に一般化可能な特徴表現の学習において課題が残されている。
本稿では,3次元医用画像データの複雑化に合わせて,解剖学的ガイダンスを持つ拡散モデルを用いた新しい事前学習戦略を提案する。
本稿では,様々な下流セグメンテーションタスクに有用な一般化可能な特徴表現を生成するモデルを事前学習するための補助拡散プロセスを提案する。
我々は3次元の普遍的な身体部分座標を予測し、拡散過程のガイダンスを提供し、生成した表現における空間的認識を改善する追加モデルを採用する。
このアプローチは、局所化不正確な問題の解決に役立つだけでなく、複雑な解剖学的構造を理解する能力も強化する。
13段階の臓器分節課題に対する実証的検証により, プレトレーニング手法の有効性が示された。
既存の3次元医用画像セグメンテーションにおける復元前トレーニング手法を7.5 %$で上回り、非線形評価シナリオにおける平均Dice係数67.8を達成し、最先端のコントラスト前トレーニング手法と競合する。
関連論文リスト
- Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3次元医用画像のセグメンテーションは、疾患の診断と治療計画に重要な意味を持つ課題である。
近年の深層学習の進歩は、完全に教師付き医療画像のセグメンテーションを著しく強化している。
本稿では,3次元医用画像に特化して設計された,確率的適応型弱教師付き学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-05T00:46:53Z) - MedContext: Learning Contextual Cues for Efficient Volumetric Medical Segmentation [25.74088298769155]
医用3次元セグメンテーションのためのユニバーサルトレーニングフレームワークMedContextを提案する。
本手法は,教師付きボクセルセグメンテーションタスクと協調して,自己教師付きコンテキストキューを効果的に学習する。
MedContextの有効性は、複数の3D医療データセットと4つの最先端モデルアーキテクチャで検証されている。
論文 参考訳(メタデータ) (2024-02-27T17:58:05Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Forward-Forward Contrastive Learning [4.465144120325802]
医用画像分類のための新しい事前学習手法として,前向きコントラスト学習(FFCL)を提案する。
FFCLは、肺炎分類タスクにおける既存の事前訓練モデルよりも、ImageNet Pretrained ResNet-18よりも3.69%の精度で性能が向上している。
論文 参考訳(メタデータ) (2023-05-04T15:29:06Z) - Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound
Reconstruction [61.62191904755521]
3DフリーハンドUSは、幅広い範囲とフリーフォームスキャンを提供することで、この問題に対処することを約束している。
既存のディープラーニングベースの手法は、スキルシーケンスの基本ケースのみに焦点を当てている。
複雑なスキルシーケンスを考慮したセンサレスフリーハンドUS再構成手法を提案する。
論文 参考訳(メタデータ) (2021-07-31T16:06:50Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation [11.873435088539459]
対象臓器アノテーションの限られたトレーニングサンプルを用いて, 正確な臓器分類を行うための3次元ショットセグメンテーションフレームワークを提案する。
U-Netのようなネットワークは、サポートデータの2次元スライスとクエリイメージの関係を学習することでセグメンテーションを予測するように設計されている。
異なる臓器のアノテーションを付加した3つの3次元CTデータセットを用いて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2020-11-19T01:44:55Z) - Learning to Segment Anatomical Structures Accurately from One Exemplar [34.287877547953194]
大量の注釈付きトレーニング画像を用いることなく、正確な解剖学的構造セグメンテーションを作成できる方法は、非常に望ましい。
本研究では,自然に組み込まれたループ機構を備えたワンショット解剖セグメントであるContour Transformer Network (CTN)を提案する。
筆者らのワンショット学習法は,非学習に基づく手法を著しく上回り,最先端の完全教師付きディープラーニングアプローチと競争的に機能することを示した。
論文 参考訳(メタデータ) (2020-07-06T20:27:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。