論文の概要: Beyond checkmate: exploring the creative chokepoints in AI text
- arxiv url: http://arxiv.org/abs/2501.19301v1
- Date: Fri, 31 Jan 2025 16:57:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:38.298118
- Title: Beyond checkmate: exploring the creative chokepoints in AI text
- Title(参考訳): チェックメイトを超えて:AIテキストの創造的なチョークポイントを探る
- Authors: Nafis Irtiza Tripto, Saranya Venkatraman, Mahjabin Nahar, Dongwon Lee,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)に革命をもたらした
本研究では,テキストセグメント間の人間のテキストとAIテキストの相違について検討した。
我々の研究は、人間とAIのテキストの区別の複雑さに光を当て、テキストの検出と理解のための新しい洞察を提供する。
- 参考スコア(独自算出の注目度): 5.427864472511595
- License:
- Abstract: Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) and Artificial Intelligence (AI), unlocking unprecedented capabilities. This rapid advancement has spurred research into various aspects of LLMs, their text generation & reasoning capability, and potential misuse, fueling the necessity for robust detection methods. While numerous prior research has focused on detecting LLM-generated text (AI text) and thus checkmating them, our study investigates a relatively unexplored territory: portraying the nuanced distinctions between human and AI texts across text segments. Whether LLMs struggle with or excel at incorporating linguistic ingenuity across different text segments carries substantial implications for determining their potential as effective creative assistants to humans. Through an analogy with the structure of chess games-comprising opening, middle, and end games-we analyze text segments (introduction, body, and conclusion) to determine where the most significant distinctions between human and AI texts exist. While AI texts can approximate the body segment better due to its increased length, a closer examination reveals a pronounced disparity, highlighting the importance of this segment in AI text detection. Additionally, human texts exhibit higher cross-segment differences compared to AI texts. Overall, our research can shed light on the intricacies of human-AI text distinctions, offering novel insights for text detection and understanding.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)に革命をもたらし、前例のない能力を開放した。
この急速な進歩により、LSMの様々な側面、テキスト生成と推論能力、潜在的な誤用などの研究が加速し、堅牢な検出方法の必要性が高まった。
LLM生成テキスト(AIテキスト)の検出と検証に多くの先行研究が注がれてきたが、本研究では、テキストセグメント間での人間とAIテキストの微妙な区別を描写する、比較的探索されていない領域について検討した。
LLMが様々なテキストセグメントに言語的創発性を組み込むのに苦労しているか、あるいは優れているかは、人間にとって効果的な創造的なアシスタントとしての可能性を決定する上で大きな意味を持つ。
チェスゲームを構成するオープニング、ミドル、エンドゲームの構造の類似を通して、私たちはテキストセグメント(回転、体、結論)を分析し、人間とAIのテキストの最も重要な区別がどこにあるかを決定する。
AIテキストは、その長さの増加により身体セグメントをよりよく近似できるが、より近い検査では、このセグメントがAIテキスト検出において重要であることを明確に示している。
さらに、人間のテキストはAIテキストよりも高い断面積差を示す。
全体として、我々の研究は、人間とAIのテキストの区別の複雑さに光を当て、テキストの検出と理解のための新しい洞察を提供することができる。
関連論文リスト
- GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には,テキスト内のAI生成間隔をローカライズするために,コンピュータビジョンから適応したDETRのような検出モデルと組み合わせて,微調整の汎用LLMを用いる。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - Differentiating between human-written and AI-generated texts using linguistic features automatically extracted from an online computational tool [0.0]
本研究の目的は,AIが人間の文章をエミュレートする能力を評価することにある。
人間の発話を模倣したAI生成テキストが現れるにもかかわらず、結果は複数の言語的特徴に有意な差が認められた。
論文 参考訳(メタデータ) (2024-07-04T05:37:09Z) - Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods [13.14749943120523]
テキストが人工知能(AI)によって作成されたかどうかを知ることは、その信頼性を決定する上で重要である。
AIGT検出に対する最先端のアプローチには、透かし、統計学的およびスタイリスティック分析、機械学習分類などがある。
AIGTテキストがどのようなシナリオで「検出可能」であるかを判断するために、結合する健全な要因についての洞察を提供することを目指している。
論文 参考訳(メタデータ) (2024-06-21T18:31:49Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
我々は、新しいフレームワーク、パラフレーズテキストスパン検出(PTD)を提案する。
PTDは、テキスト内でパラフレーズ付きテキストを識別することを目的としている。
パラフレーズ付きテキストスパン検出のための専用データセットであるPASTEDを構築した。
論文 参考訳(メタデータ) (2024-05-21T11:22:27Z) - A Survey of AI-generated Text Forensic Systems: Detection, Attribution,
and Characterization [13.44566185792894]
AI生成テキスト鑑定は、LLMの誤用に対処する新たな分野である。
本稿では,検出,帰属,特性の3つの主要な柱に着目した詳細な分類法を紹介する。
我々は、AI生成テキスト法医学研究の利用可能なリソースを探究し、AI時代の法医学システムの進化的課題と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-03-02T09:39:13Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - The Imitation Game: Detecting Human and AI-Generated Texts in the Era of
ChatGPT and BARD [3.2228025627337864]
異なるジャンルの人文・AI生成テキストのデータセットを新たに導入する。
テキストを分類するために、いくつかの機械学習モデルを使用します。
結果は、人間とAIが生成したテキストを識別する上で、これらのモデルの有効性を示す。
論文 参考訳(メタデータ) (2023-07-22T21:00:14Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。