論文の概要: Differentiating between human-written and AI-generated texts using linguistic features automatically extracted from an online computational tool
- arxiv url: http://arxiv.org/abs/2407.03646v2
- Date: Thu, 11 Jul 2024 10:56:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:58:43.634218
- Title: Differentiating between human-written and AI-generated texts using linguistic features automatically extracted from an online computational tool
- Title(参考訳): オンライン計算ツールから自動抽出される言語的特徴を用いた人書きテキストとAI生成テキストの識別
- Authors: Georgios P. Georgiou,
- Abstract要約: 本研究の目的は,AIが人間の文章をエミュレートする能力を評価することにある。
人間の発話を模倣したAI生成テキストが現れるにもかかわらず、結果は複数の言語的特徴に有意な差が認められた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While extensive research has focused on ChatGPT in recent years, very few studies have systematically quantified and compared linguistic features between human-written and Artificial Intelligence (AI)-generated language. This study aims to investigate how various linguistic components are represented in both types of texts, assessing the ability of AI to emulate human writing. Using human-authored essays as a benchmark, we prompted ChatGPT to generate essays of equivalent length. These texts were analyzed using Open Brain AI, an online computational tool, to extract measures of phonological, morphological, syntactic, and lexical constituents. Despite AI-generated texts appearing to mimic human speech, the results revealed significant differences across multiple linguistic features such as consonants, word stress, nouns, verbs, pronouns, direct objects, prepositional modifiers, and use of difficult words among others. These findings underscore the importance of integrating automated tools for efficient language assessment, reducing time and effort in data analysis. Moreover, they emphasize the necessity for enhanced training methodologies to improve the capacity of AI for producing more human-like text.
- Abstract(参考訳): 近年ではChatGPTに焦点が当てられているが、人間の書き起こし言語と人工知能(AI)生成言語の間の言語的特徴を体系的に定量化し比較する研究はほとんどない。
本研究の目的は,AIが人間の文章をエミュレートする能力を評価することにある。
人によるエッセイをベンチマークとして使用し、ChatGPTに同等の長さのエッセイを生成するように促しました。
これらのテキストは、オンライン計算ツールであるOpen Brain AIを用いて分析され、音韻学、形態学、構文学、語彙構成成分の尺度を抽出した。
その結果, 人間の発話を模倣したAI生成テキストが現れるにもかかわらず, 子音, 単語ストレス, 名詞, 動詞, 代名詞, 直接目的語, 前置詞修飾語, 難解語の使用など, 複数の言語的特徴に有意な差異が認められた。
これらの知見は、効率的な言語評価、データ分析における時間と労力の削減のための自動化ツールの統合の重要性を浮き彫りにしている。
さらに、より人間的なテキストを生成するために、AIの能力を向上させるためのトレーニング方法論を強化する必要性を強調している。
関連論文リスト
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - Decoding AI and Human Authorship: Nuances Revealed Through NLP and Statistical Analysis [0.0]
本研究では,AIが生成したテキストと人間が作成したテキストの微妙な相違について検討する。
本研究は,人文・AI生成テキストに固有の言語特性,創造性パターン,潜在的なバイアスについて検討した。
論文 参考訳(メタデータ) (2024-07-15T18:09:03Z) - Who Writes the Review, Human or AI? [0.36498648388765503]
本研究では,AIによる書評と人間による書評を正確に区別する手法を提案する。
提案手法は移動学習を利用して,異なるトピック間で生成したテキストを識別する。
実験の結果、元のテキストのソースを検出でき、精度96.86%に達することが示されている。
論文 参考訳(メタデータ) (2024-05-30T17:38:44Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
我々は、新しいフレームワーク、パラフレーズテキストスパン検出(PTD)を提案する。
PTDは、テキスト内でパラフレーズ付きテキストを識別することを目的としている。
パラフレーズ付きテキストスパン検出のための専用データセットであるPASTEDを構築した。
論文 参考訳(メタデータ) (2024-05-21T11:22:27Z) - ChatHuman: Language-driven 3D Human Understanding with Retrieval-Augmented Tool Reasoning [57.29285473727107]
ChatHumanは言語による人間の理解システムである。
多くの異なる手法のスキルを組み合わせて統合する。
ChatHumanは、人間の分析のための多様な手法を、単一の強力な3D推論システムに統合するための一歩だ。
論文 参考訳(メタデータ) (2024-05-07T17:59:31Z) - Is English the New Programming Language? How About Pseudo-code Engineering? [0.0]
本研究では,OpenAIの指導的言語モデルであるChatGPTに異なる入力形式がどのような影響を及ぼすかを検討する。
それは、意図、解釈可能性、完全性、創造性の4つのカテゴリにまたがるモデルの習熟度を調べる。
論文 参考訳(メタデータ) (2024-04-08T16:28:52Z) - Evaluating the Efficacy of Hybrid Deep Learning Models in Distinguishing
AI-Generated Text [0.0]
私の研究は、AI生成テキストと人間の文章を正確に区別するために、最先端のハイブリッドディープラーニングモデルを使用することを調査します。
さまざまなソースからAIと人文からなる慎重に選択されたデータセットを利用し、それぞれに指示をタグ付けして、堅牢な方法論を適用しました。
論文 参考訳(メタデータ) (2023-11-27T06:26:53Z) - Improving Mandarin Prosodic Structure Prediction with Multi-level
Contextual Information [68.89000132126536]
本研究は,音声間言語情報を用いて韻律構造予測(PSP)の性能を向上させることを提案する。
提案手法は,韻律語(PW),韻律語(PPH),国際語句(IPH)の予測におけるF1スコアの向上を実現する。
論文 参考訳(メタデータ) (2023-08-31T09:19:15Z) - The Imitation Game: Detecting Human and AI-Generated Texts in the Era of
ChatGPT and BARD [3.2228025627337864]
異なるジャンルの人文・AI生成テキストのデータセットを新たに導入する。
テキストを分類するために、いくつかの機械学習モデルを使用します。
結果は、人間とAIが生成したテキストを識別する上で、これらのモデルの有効性を示す。
論文 参考訳(メタデータ) (2023-07-22T21:00:14Z) - AI, write an essay for me: A large-scale comparison of human-written
versus ChatGPT-generated essays [66.36541161082856]
ChatGPTや同様の生成AIモデルは、何億人ものユーザーを惹きつけている。
本研究は,ChatGPTが生成した議論的学生エッセイと比較した。
論文 参考訳(メタデータ) (2023-04-24T12:58:28Z) - Evaluating Transformer-Based Multilingual Text Classification [55.53547556060537]
我々は,NLPツールが構文的・形態学的に異なる言語で不平等に機能すると主張している。
実験研究を支援するために,単語順と形態的類似度指標を算出した。
論文 参考訳(メタデータ) (2020-04-29T03:34:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。