Beyond checkmate: exploring the creative chokepoints in AI text
- URL: http://arxiv.org/abs/2501.19301v1
- Date: Fri, 31 Jan 2025 16:57:01 GMT
- Title: Beyond checkmate: exploring the creative chokepoints in AI text
- Authors: Nafis Irtiza Tripto, Saranya Venkatraman, Mahjabin Nahar, Dongwon Lee,
- Abstract summary: Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) and Artificial Intelligence (AI)
Our study investigates the nuanced distinctions between human and AI texts across text segments.
Our research can shed light on the intricacies of human-AI text distinctions, offering novel insights for text detection and understanding.
- Score: 5.427864472511595
- License:
- Abstract: Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) and Artificial Intelligence (AI), unlocking unprecedented capabilities. This rapid advancement has spurred research into various aspects of LLMs, their text generation & reasoning capability, and potential misuse, fueling the necessity for robust detection methods. While numerous prior research has focused on detecting LLM-generated text (AI text) and thus checkmating them, our study investigates a relatively unexplored territory: portraying the nuanced distinctions between human and AI texts across text segments. Whether LLMs struggle with or excel at incorporating linguistic ingenuity across different text segments carries substantial implications for determining their potential as effective creative assistants to humans. Through an analogy with the structure of chess games-comprising opening, middle, and end games-we analyze text segments (introduction, body, and conclusion) to determine where the most significant distinctions between human and AI texts exist. While AI texts can approximate the body segment better due to its increased length, a closer examination reveals a pronounced disparity, highlighting the importance of this segment in AI text detection. Additionally, human texts exhibit higher cross-segment differences compared to AI texts. Overall, our research can shed light on the intricacies of human-AI text distinctions, offering novel insights for text detection and understanding.
Related papers
- Who Writes What: Unveiling the Impact of Author Roles on AI-generated Text Detection [44.05134959039957]
We investigate how sociolinguistic attributes-gender, CEFR proficiency, academic field, and language environment-impact state-of-the-art AI text detectors.
Our results reveal significant biases: CEFR proficiency and language environment consistently affected detector accuracy, while gender and academic field showed detector-dependent effects.
These findings highlight the crucial need for socially aware AI text detection to avoid unfairly penalizing specific demographic groups.
arXiv Detail & Related papers (2025-02-18T07:49:31Z) - Human Variability vs. Machine Consistency: A Linguistic Analysis of Texts Generated by Humans and Large Language Models [0.0]
We identify significant differences between human-written texts and those generated by large language models (LLMs)
Our findings indicate that humans write texts that are less cognitively demanding, with higher semantic content, and richer emotional content compared to texts generated by LLMs.
arXiv Detail & Related papers (2024-12-04T04:38:35Z) - GigaCheck: Detecting LLM-generated Content [72.27323884094953]
In this work, we investigate the task of generated text detection by proposing the GigaCheck.
Our research explores two approaches: (i) distinguishing human-written texts from LLM-generated ones, and (ii) detecting LLM-generated intervals in Human-Machine collaborative texts.
Specifically, we use a fine-tuned general-purpose LLM in conjunction with a DETR-like detection model, adapted from computer vision, to localize AI-generated intervals within text.
arXiv Detail & Related papers (2024-10-31T08:30:55Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Differentiating between human-written and AI-generated texts using linguistic features automatically extracted from an online computational tool [0.0]
This study aims to investigate how various linguistic components are represented in both types of texts, assessing the ability of AI to emulate human writing.
Despite AI-generated texts appearing to mimic human speech, the results revealed significant differences across multiple linguistic features.
arXiv Detail & Related papers (2024-07-04T05:37:09Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
We propose a novel framework, paraphrased text span detection (PTD)
PTD aims to identify paraphrased text spans within a text.
We construct a dedicated dataset, PASTED, for paraphrased text span detection.
arXiv Detail & Related papers (2024-05-21T11:22:27Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - The Imitation Game: Detecting Human and AI-Generated Texts in the Era of
ChatGPT and BARD [3.2228025627337864]
We introduce a novel dataset of human-written and AI-generated texts in different genres.
We employ several machine learning models to classify the texts.
Results demonstrate the efficacy of these models in discerning between human and AI-generated text.
arXiv Detail & Related papers (2023-07-22T21:00:14Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
arXiv Detail & Related papers (2023-05-22T17:13:29Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.