MINDSTORES: Memory-Informed Neural Decision Synthesis for Task-Oriented Reinforcement in Embodied Systems
- URL: http://arxiv.org/abs/2501.19318v1
- Date: Fri, 31 Jan 2025 17:15:33 GMT
- Title: MINDSTORES: Memory-Informed Neural Decision Synthesis for Task-Oriented Reinforcement in Embodied Systems
- Authors: Anirudh Chari, Suraj Reddy, Aditya Tiwari, Richard Lian, Brian Zhou,
- Abstract summary: We introduce MINDSTORES, an experience-augmented planning framework that enables embodied agents to build and leverage mental models.
We find that MINDSTORES learns and applies its knowledge significantly better than existing memory-based LLM planners.
- Score: 0.5662299435213421
- License:
- Abstract: While large language models (LLMs) have shown promising capabilities as zero-shot planners for embodied agents, their inability to learn from experience and build persistent mental models limits their robustness in complex open-world environments like Minecraft. We introduce MINDSTORES, an experience-augmented planning framework that enables embodied agents to build and leverage mental models through natural interaction with their environment. Drawing inspiration from how humans construct and refine cognitive mental models, our approach extends existing zero-shot LLM planning by maintaining a database of past experiences that informs future planning iterations. The key innovation is representing accumulated experiences as natural language embeddings of (state, task, plan, outcome) tuples, which can then be efficiently retrieved and reasoned over by an LLM planner to generate insights and guide plan refinement for novel states and tasks. Through extensive experiments in the MineDojo environment, a simulation environment for agents in Minecraft that provides low-level controls for Minecraft, we find that MINDSTORES learns and applies its knowledge significantly better than existing memory-based LLM planners while maintaining the flexibility and generalization benefits of zero-shot approaches, representing an important step toward more capable embodied AI systems that can learn continuously through natural experience.
Related papers
- Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
We propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization.
It is the first expert-free planning framework since we combine the world knowledge from Large Language Models with formal reasoning.
Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.
arXiv Detail & Related papers (2025-01-25T13:33:22Z) - APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents [8.479128275067742]
We present an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex structures in Minecraft.
By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints.
Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process.
arXiv Detail & Related papers (2024-11-26T09:31:28Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [81.32722475387364]
Large Language Model-based agents have garnered significant attention and are becoming increasingly popular.
Planning ability is a crucial component of an LLM-based agent, which generally entails achieving a desired goal from an initial state.
Recent studies have demonstrated that utilizing expert-level trajectory for instruction-tuning LLMs effectively enhances their planning capabilities.
arXiv Detail & Related papers (2024-08-01T17:59:46Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
We introduce a novel tool invocation pipeline designed to control massive real-world APIs.
This pipeline mirrors the human task-solving process, addressing complicated real-life user queries.
Empirical evaluations of our Sum2Act pipeline on the ToolBench benchmark show significant performance improvements.
arXiv Detail & Related papers (2024-02-28T08:42:23Z) - Look Before You Leap: Unveiling the Power of GPT-4V in Robotic
Vision-Language Planning [32.045840007623276]
We introduce Robotic Vision-Language Planning (ViLa), a novel approach for long-horizon robotic planning.
ViLa directly integrates perceptual data into its reasoning and planning process.
Our evaluation, conducted in both real-robot and simulated environments, demonstrates ViLa's superiority over existing LLM-based planners.
arXiv Detail & Related papers (2023-11-29T17:46:25Z) - From Static to Dynamic: A Continual Learning Framework for Large
Language Models [41.59643329735528]
This paper presents DynaMind, a novel continual learning framework for large language models (LLMs)
DynaMind incorporates memory mechanisms to assimilate new knowledge and modular operators to enhance the model inference process.
Benchmark experiments demonstrate DynaMind's effectiveness in overcoming these challenges.
arXiv Detail & Related papers (2023-10-22T10:18:53Z) - DREAMWALKER: Mental Planning for Continuous Vision-Language Navigation [107.5934592892763]
We propose DREAMWALKER -- a world model based VLN-CE agent.
The world model is built to summarize the visual, topological, and dynamic properties of the complicated continuous environment.
It can simulate and evaluate possible plans entirely in such internal abstract world, before executing costly actions.
arXiv Detail & Related papers (2023-08-14T23:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.