Think, Reflect, Create: Metacognitive Learning for Zero-Shot Robotic Planning with LLMs
- URL: http://arxiv.org/abs/2505.14899v2
- Date: Sat, 02 Aug 2025 09:43:52 GMT
- Title: Think, Reflect, Create: Metacognitive Learning for Zero-Shot Robotic Planning with LLMs
- Authors: Wenjie Lin, Jin Wei-Kocsis, Jiansong Zhang, Byung-Cheol Min, Dongming Gan, Paul Asunda, Ragu Athinarayanan,
- Abstract summary: Large language models (LLMs) have shown great potential across various domains.<n>We present a framework that integrates metacognitive learning into LLM-powered multi-robot collaboration.<n>We propose a more challenging robotic benchmark task and evaluate our framework on the existing benchmark and the novel task.
- Score: 3.0067862210362284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While large language models (LLMs) have shown great potential across various domains, their applications in robotics remain largely limited to static prompt-based behaviors and still face challenges in complex tasks under zero-shot or few-shot settings. Inspired by human metacognitive learning and creative problem-solving, we address this limitation by exploring a fundamental question: Can LLMs be empowered with metacognitive capabilities to reason, reflect, and create, thereby enhancing their ability to perform robotic tasks with minimal demonstrations? In this paper, we present a framework that integrates metacognitive learning into LLM-powered multi-robot collaboration. The system equips the LLM-powered robotic agents with a skill decomposition and self-reflection mechanism that identifies modular skills from prior tasks, reflects on failures in unseen task scenarios, and synthesizes effective new solutions. We propose a more challenging robotic benchmark task and evaluate our framework on the existing benchmark and the novel task. Experimental results show that our metacognitive learning framework significantly outperforms existing baselines. Moreover, we observe that the framework can generate solutions that differ from the ground truth yet still successfully complete the tasks. These findings support our hypothesis that metacognitive learning can foster creativity in robotic planning.
Related papers
- RoBridge: A Hierarchical Architecture Bridging Cognition and Execution for General Robotic Manipulation [90.81956345363355]
RoBridge is a hierarchical intelligent architecture for general robotic manipulation.<n>It consists of a high-level cognitive planner (HCP) based on a large-scale pre-trained vision-language model (VLM)<n>It unleashes the procedural skill of reinforcement learning, effectively bridging the gap between cognition and execution.
arXiv Detail & Related papers (2025-05-03T06:17:18Z) - A Call for New Recipes to Enhance Spatial Reasoning in MLLMs [85.67171333213301]
Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in general vision-language tasks.<n>Recent studies have exposed critical limitations in their spatial reasoning capabilities.<n>This deficiency in spatial reasoning significantly constrains MLLMs' ability to interact effectively with the physical world.
arXiv Detail & Related papers (2025-04-21T11:48:39Z) - MoLe-VLA: Dynamic Layer-skipping Vision Language Action Model via Mixture-of-Layers for Efficient Robot Manipulation [24.200547898713126]
Multimodal Large Language Models (MLLMs) excel in understanding complex language and visual data.<n>Their real-world deployment is hindered by substantial computational and storage demands.<n>We propose a Mixture-of-Layers Vision-Language-Action model (MoLe) architecture for dynamic LLM layer activation.
arXiv Detail & Related papers (2025-03-26T10:05:38Z) - Large Language Models as Natural Selector for Embodied Soft Robot Design [5.023206838671049]
This paper introduces RoboCrafter-QA, a novel benchmark to evaluate whether Large Language Models can learn representations of soft robot designs.<n>Our experiments reveal that while these models exhibit promising capabilities in learning design representations, they struggle with fine-grained distinctions between designs with subtle performance differences.
arXiv Detail & Related papers (2025-03-04T03:55:10Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.<n>WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - Look Before You Leap: Unveiling the Power of GPT-4V in Robotic
Vision-Language Planning [32.045840007623276]
We introduce Robotic Vision-Language Planning (ViLa), a novel approach for long-horizon robotic planning.
ViLa directly integrates perceptual data into its reasoning and planning process.
Our evaluation, conducted in both real-robot and simulated environments, demonstrates ViLa's superiority over existing LLM-based planners.
arXiv Detail & Related papers (2023-11-29T17:46:25Z) - Large Language Models for Robotics: A Survey [40.76581696885846]
Large language models (LLMs) possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots.
This review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning.
arXiv Detail & Related papers (2023-11-13T10:46:35Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from Offline Data [96.5899286619008]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.<n>Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.<n>We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - LLM as A Robotic Brain: Unifying Egocentric Memory and Control [77.0899374628474]
Embodied AI focuses on the study and development of intelligent systems that possess a physical or virtual embodiment (i.e. robots)
Memory and control are the two essential parts of an embodied system and usually require separate frameworks to model each of them.
We propose a novel framework called LLM-Brain: using Large-scale Language Model as a robotic brain to unify egocentric memory and control.
arXiv Detail & Related papers (2023-04-19T00:08:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.