Tailoring photon statistics with an atom-based two-photon interferometer
- URL: http://arxiv.org/abs/2212.09592v1
- Date: Mon, 19 Dec 2022 16:24:54 GMT
- Title: Tailoring photon statistics with an atom-based two-photon interferometer
- Authors: Martin Cordier, Max Schemmer, Philipp Schneeweiss, J\"urgen Volz and
Arno Rauschenbeutel
- Abstract summary: We actively control the quantum phase between the transmitted and incoherently scattered two-photon component.
We observe interference fringes in the normalized photon coincidence rate, varying from antibunching to bunching.
Our results lend themselves to the development of novel quantum light sources.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Controlling the photon statistics of light is paramount for quantum science
and technologies. Recently, we demonstrated that transmitting resonant laser
light past an ensemble of two-level emitters can result in a stream of single
photons or excess photon pairs. This transformation is due to quantum
interference between the transmitted and incoherently scattered two-photon
component. Here, using the dispersion of the atomic medium, we actively control
the relative quantum phase between these two components. We thereby realize a
tunable two-photon interferometer and observe interference fringes in the
normalized photon coincidence rate, varying from antibunching to bunching.
Beyond the fundamental insight that the quantum phase between incoherent and
coherent light can be tuned and dictates photon statistics, our results lend
themselves to the development of novel quantum light sources.
Related papers
- Two-particle quantum interference in a nonlinear optical medium: a witness of timelike indistinguishability [9.138791215366014]
Hong-Ou-Mandel effect is a paradigmatic quantum phenomenon demonstrating the interference of two indistinguishable photons that are linearly coupled at a 50:50 beam splitter.
Here, we transpose such a two-particle quantum interference effect to the nonlinear regime, when two single photons are impinging on a parametric down-conversion crystal.
We experimentally demonstrate the suppression of the probability of detecting precisely one photon pair when the amplification gain is tuned to 2, which arises from the destructive interference between the transmitted and reborn photon pairs.
arXiv Detail & Related papers (2025-02-03T16:15:50Z) - Two-photon interference between mutually-detuned resonance fluorescence signals scattered off a semiconductor quantum dot [8.451939626098337]
Post-selective two-photon interference experiments between mutually-detuned resonance fluorescence signals from an InAs quantum dot embedded in a micropillar cavity.
Results suggest that indistinguishability among photons scattered off a quantum dot is inherently insensitive to the driving laser's detuning.
arXiv Detail & Related papers (2025-01-28T13:32:26Z) - Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Two-photon emission in detuned resonance fluorescence [0.0]
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently.
We show that their combination leads to a neat picture compatible with perturbative two-photon scattering.
This should help to control, enhance and open new regimes of multiphoton emission.
arXiv Detail & Related papers (2022-10-07T17:59:38Z) - Will a single two-level atom simultaneously scatter two photons? [2.9785870773347645]
Two photons are never detected simultaneously in the light scattered by the emitter.
This is commonly interpreted by saying that a single two-level quantum emitter can only absorb and emit single photons.
Our results offer fundamental insights into the quantum-mechanical interaction between light and matter.
arXiv Detail & Related papers (2022-09-06T14:56:36Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.