論文の概要: We're Different, We're the Same: Creative Homogeneity Across LLMs
- arxiv url: http://arxiv.org/abs/2501.19361v1
- Date: Fri, 31 Jan 2025 18:12:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:04:08.359630
- Title: We're Different, We're the Same: Creative Homogeneity Across LLMs
- Title(参考訳): LLM全体での創造的均一性(Creative Homogeneity)
- Authors: Emily Wenger, Yoed Kenett,
- Abstract要約: 大規模言語モデル(LLM)が、書き込みサポートツールやアイデアジェネレータなどとして利用可能になった。
LLMを創造的なパートナーとして使用すると、より狭い創造的なアウトプットが得られることが、いくつかの研究で示されている。
- 参考スコア(独自算出の注目度): 6.532204241949196
- License:
- Abstract: Numerous powerful large language models (LLMs) are now available for use as writing support tools, idea generators, and beyond. Although these LLMs are marketed as helpful creative assistants, several works have shown that using an LLM as a creative partner results in a narrower set of creative outputs. However, these studies only consider the effects of interacting with a single LLM, begging the question of whether such narrowed creativity stems from using a particular LLM -- which arguably has a limited range of outputs -- or from using LLMs in general as creative assistants. To study this question, we elicit creative responses from humans and a broad set of LLMs using standardized creativity tests and compare the population-level diversity of responses. We find that LLM responses are much more similar to other LLM responses than human responses are to each other, even after controlling for response structure and other key variables. This finding of significant homogeneity in creative outputs across the LLMs we evaluate adds a new dimension to the ongoing conversation about creativity and LLMs. If today's LLMs behave similarly, using them as a creative partners -- regardless of the model used -- may drive all users towards a limited set of "creative" outputs.
- Abstract(参考訳): 多数の強力な大規模言語モデル(LLM)が,書き込みサポートツールやアイデアジェネレータなどとして使用できるようになった。
これらのLLMは有用なクリエイティブアシスタントとして販売されているが、いくつかの研究により、LLMをクリエイティブパートナーとして使用すると、より狭いクリエイティブアウトプットが得られることが示されている。
しかしながら、これらの研究は単一のLSMと相互作用することの効果のみを考慮し、そのような狭い創造性は特定のLSM(おそらく限られた範囲の出力を持つ)の使用によるものなのか、創造的なアシスタントとして一般的にLLMを使用することによるものなのかという疑問を提起している。
そこで本研究では,人間による創造的応答とLLMの幅広いセットを標準化された創造性テストを用いて抽出し,個体群レベルでの応答の多様性を比較する。
LLM応答は, 応答構造や他のキー変数を制御した後でも, 人間の応答が互いに一致している場合よりも, はるかに類似していることがわかった。
LLMにおける創造的アウトプットの顕著な均一性の発見は、創造性とLLMに関する会話に新たな次元を付加する。
今日のLLMも同様に振る舞うならば、それらを創造的なパートナとして(使用するモデルに関係なく)使用すれば、すべてのユーザが“創造的”なアウトプットのセットに制限される可能性がある。
関連論文リスト
- Divergent Creativity in Humans and Large Language Models [37.67363469600804]
最近の大規模言語モデルの能力の急上昇は、人間の能力に似た創造性レベルに近づいている、という主張につながっている。
我々は、創造科学の最近の進歩を活用して、最先端のLLMと10万人の実質的なデータセットの両方において、多様な創造性を詳細に分析するためのフレームワークを構築します。
論文 参考訳(メタデータ) (2024-05-13T22:37:52Z) - LLM Discussion: Enhancing the Creativity of Large Language Models via Discussion Framework and Role-Play [43.55248812883912]
大規模言語モデル(LLM)は自然言語処理において例外的な習熟度を示してきたが、しばしばオープンエンドの質問に対する創造的で独創的な応答を生成できない。
LLM議論は,アイデア交換の活発化と多様化を促進する3段階の議論フレームワークである。
提案手法の有効性を, 代替利用テスト, 類似性テスト, インスタンステスト, 科学的創造性テストを用いて評価した。
論文 参考訳(メタデータ) (2024-05-10T10:19:14Z) - Characterising the Creative Process in Humans and Large Language Models [6.363158395541767]
本研究では,人間とLLMが交互利用課題における意味空間を探索する方法を自動評価する手法を提案する。
文埋め込みを用いて応答カテゴリを識別し、ジャンププロファイルを生成するために使用する意味的類似性を計算する。
我々の結果は、人間における初期の研究と、永続性(意味空間の深部探索)と柔軟性(複数の意味空間を横断する広部探索)の両方を創造性に反映している。
人口としてのLSMは人間のプロファイルと一致するが、創造性との関係は異なる。
論文 参考訳(メタデータ) (2024-05-01T23:06:46Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Assessing and Understanding Creativity in Large Language Models [33.37237667182931]
本稿では,大規模言語モデル(LLM)における創造性レベルを評価するための効率的な枠組みを確立することを目的とする。
The Torrance Tests of Creative Thinking を用いて、7つのタスクにまたがる様々なLSMの創造的パフォーマンスを評価する。
LLMの創造性は、主に独創性に欠けるが、エラボレーションには優れていた。
論文 参考訳(メタデータ) (2024-01-23T05:19:47Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - See the Unseen: Better Context-Consistent Knowledge-Editing by Noises [73.54237379082795]
知識編集が大規模言語モデル(LLM)の知識を更新
既存の作業はこの特性を無視し、編集には一般化が欠けている。
実験により、異なる文脈がLLMに与える影響は、同じ知識を思い出す際にガウス的な分布に従うことが判明した。
論文 参考訳(メタデータ) (2024-01-15T09:09:14Z) - Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage
and Sharing in LLMs [72.49064988035126]
マルチモーダル大規模言語モデル(MLLM)の強化を目的としたMKS2という手法を提案する。
具体的には、LLMの内部ブロックに組み込まれたコンポーネントであるModular Visual Memoryを導入し、オープンワールドの視覚情報を効率的に保存するように設計されている。
実験により,MKS2は物理的・常識的な知識を必要とする文脈において,LLMの推論能力を大幅に増強することが示された。
論文 参考訳(メタデータ) (2023-11-27T12:29:20Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。