A topological theory for qLDPC: non-Clifford gates and magic state fountain on homological product codes with constant rate and beyond the $N^{1/3}$ distance barrier
- URL: http://arxiv.org/abs/2501.19375v2
- Date: Fri, 14 Feb 2025 05:51:26 GMT
- Title: A topological theory for qLDPC: non-Clifford gates and magic state fountain on homological product codes with constant rate and beyond the $N^{1/3}$ distance barrier
- Authors: Guanyu Zhu,
- Abstract summary: We develop a unified theory for fault-tolerant quantum computation in quantum low-density parity-check (qLDPC) and topological codes.
We show that there exist hidden simplicial complex structures encoding the topological data for all qLDPC and CSS codes obtained from product construction.
- Score: 0.0
- License:
- Abstract: We develop a unified theory for fault-tolerant quantum computation in quantum low-density parity-check (qLDPC) and topological codes. We show that there exist hidden simplicial complex structures encoding the topological data for all qLDPC and CSS codes obtained from product construction by generalizing the Freedman-Hastings code-to-manifold mapping. This is achieved by building manifolds corresponding to high-dimensional topological expanders from the Tanner graphs of the skeleton classical or quantum codes, which further form a product manifold and an associated thickened product code defined on its triangulation with only a constant qubit overhead. This suggests that qLDPC or more generally CSS codes obtained from product constructions are topological, and hence can admit cohomology operations such as cup products, physically corresponding to higher symmetries in the underlying topological quantum field theory. When applying this mapping to a 3D hypergraph product code obtained from the product of 3 copies of good classical expander codes, we obtain the first non-Clifford logical CCZ gates via constant depth circuits on a code with constant stabilizer weight $w=O(1)$, constant rate $K=\Theta(N)$, and polynomial distance $D=\Omega(N^{1/3})$. When applied to 3D homological product codes consisting of the product of a pair of good quantum and classical LDPC codes, we can further improve the distance to $D=\Omega(\sqrt{N})$ exceeding the $N^{1/3}$ distance barrier implied by the Bravyi-K\"onig bound for conventional topological codes. Our work suggests that it is feasible to apply native logical non-Clifford gates on qLDPC codes or directly inject high-fidelity magic states as resources (`magic state fountain') without the distillation process. For the homological product construction, the fountain can inject $\Theta(\sqrt{N})$ magic states in parallel in a single round.
Related papers
- Generating logical magic states with the aid of non-Abelian topological order [0.0]
We propose a new protocol that combines magic state preparation and code switching to realize logical non-Clifford operations.
Our approach begins with a special logical state in the $mathbbZ_4$ surface code.
arXiv Detail & Related papers (2025-02-03T02:38:32Z) - Targeted Clifford logical gates for hypergraph product codes [61.269295538188636]
We construct explicit targeted logical gates for hypergraph product codes.
As a concrete example, we give logical circuits for the $[[18,2,3]]$ toric code.
arXiv Detail & Related papers (2024-11-26T02:32:44Z) - Classifying Logical Gates in Quantum Codes via Cohomology Operations and Symmetry [0.0]
We construct and classify fault-tolerant logical gates implemented by constant-depth circuits for quantum codes.
We present a formalism for addressable and parallelizable logical gates in LDPC codes via higher-form symmetries.
As a byproduct, we find new topological responses of finite higher-form symmetries using higher Pontryagin powers.
arXiv Detail & Related papers (2024-11-24T14:01:37Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Quantum LDPC Codes with Transversal Non-Clifford Gates via Products of Algebraic Codes [0.9208007322096533]
We construct an explicit infinite family of quantum LDPC codes supporting a $Cr-1Z$ gate with length $N$, dimension $Kgeq N1-epsilon$, distance $Dgeq N1/r/namepoly(log N)$, and stabilizer weight $wleqoperatorname(log N)$.
arXiv Detail & Related papers (2024-10-18T17:52:59Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Asymptotically Good Quantum Codes with Transversal Non-Clifford Gates [23.22566380210149]
We construct quantum codes that support $CCZ$ gates over qudits of arbitrary prime power dimension $q$.
The only previously known construction with such linear dimension and distance required a growing alphabet size $q$.
arXiv Detail & Related papers (2024-08-17T16:54:51Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries [1.3194391758295114]
We study fault-tolerant quantum computing for families of homological quantum low-density parity-check codes defined on 3-manifolds with constant or almost-constant encoding rate.
We have developed a generic formalism to compute the triple intersection invariants for 3-manifolds.
arXiv Detail & Related papers (2023-10-25T20:33:59Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.