論文の概要: Redefining Machine Unlearning: A Conformal Prediction-Motivated Approach
- arxiv url: http://arxiv.org/abs/2501.19403v1
- Date: Fri, 31 Jan 2025 18:58:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:00.441845
- Title: Redefining Machine Unlearning: A Conformal Prediction-Motivated Approach
- Title(参考訳): Redefining Machine Unlearning: Conformal Prediction-Motivated Approach
- Authors: Yingdan Shi, Ren Wang,
- Abstract要約: 既存の未学習指標の限界を同定し,共形予測にインスパイアされた評価指標を提案する。
我々のメトリクスは、予測セットから基底真理ラベルが除外される範囲を効果的に捉えることができる。
本稿では,Carini & Wagner 対逆攻撃損失に対する共形予測の洞察を統合するアンラーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.3731623617634434
- License:
- Abstract: Machine unlearning seeks to systematically remove specified data from a trained model, effectively achieving a state as though the data had never been encountered during training. While metrics such as Unlearning Accuracy (UA) and Membership Inference Attack (MIA) provide a baseline for assessing unlearning performance, they fall short of evaluating the completeness and reliability of forgetting. This is because the ground truth labels remain potential candidates within the scope of uncertainty quantification, leaving gaps in the evaluation of true forgetting. In this paper, we identify critical limitations in existing unlearning metrics and propose enhanced evaluation metrics inspired by conformal prediction. Our metrics can effectively capture the extent to which ground truth labels are excluded from the prediction set. Furthermore, we observe that many existing machine unlearning methods do not achieve satisfactory forgetting performance when evaluated with our new metrics. To address this, we propose an unlearning framework that integrates conformal prediction insights into Carlini & Wagner adversarial attack loss. Extensive experiments on the image classification task demonstrate that our enhanced metrics offer deeper insights into unlearning effectiveness, and that our unlearning framework significantly improves the forgetting quality of unlearning methods.
- Abstract(参考訳): 機械学習は、訓練されたモデルから指定されたデータを体系的に取り除き、トレーニング中にデータが遭遇したことがないかのように、効果的に状態を達成しようとする。
Unlearning Accuracy (UA) や Membership Inference Attack (MIA) のようなメトリクスは、未学習のパフォーマンスを評価するためのベースラインを提供するが、彼らは忘れることの完全性と信頼性を評価するには不足している。
これは、根拠となる真理ラベルが不確実な定量化の範囲内で潜在的な候補のままであり、真の忘れることの評価にギャップが残るためである。
本稿では,既存のアンラーニング指標の限界を同定し,共形予測にインスパイアされた評価指標を提案する。
我々のメトリクスは、予測セットから基底真理ラベルが除外される範囲を効果的に捉えることができる。
さらに、既存の機械学習手法の多くは、新しいメトリクスで評価しても、性能を忘れることに満足できないことが観察された。
これを解決するために,Carini & Wagner 対逆攻撃損失に共形予測の洞察を統合するアンラーニングフレームワークを提案する。
画像分類タスクに関する大規模な実験は、拡張されたメトリクスが未学習の有効性に関する深い洞察を与え、未学習のフレームワークが未学習のメソッドの忘れられる品質を大幅に改善することを示した。
関連論文リスト
- A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
大型言語モデル(LLM)は機密または著作権のあるコンテンツを記憶し、プライバシーと法的懸念を高める。
LLMの機械学習におけるいくつかの問題について議論し、可能なアプローチについての洞察を提供する。
論文 参考訳(メタデータ) (2024-10-10T16:56:05Z) - Revisiting Machine Unlearning with Dimensional Alignment [46.29161970063835]
そこで本研究では,未知の固有空間間のアライメントを計測し,データセットの保持を行う,機械学習のための新しい評価基準を提案する。
筆者らの枠組みは, 忘れ物から情報を効果的に排除し, 保持物から知識を保存している。
論文 参考訳(メタデータ) (2024-07-25T02:05:15Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - An Information Theoretic Evaluation Metric For Strong Unlearning [20.143627174765985]
情報理論にインスパイアされた新しいホワイトボックス計量であるIDI(Information difference Index)を導入する。
IDIは、これらの特徴と忘れるべきラベルの相互情報を測定することにより、中間特徴の保持情報を定量化する。
我々の実験は、IDIが様々なデータセットやアーキテクチャをまたいだアンラーニングの度合いを効果的に測定できることを実証した。
論文 参考訳(メタデータ) (2024-05-28T06:57:01Z) - Towards Reliable Empirical Machine Unlearning Evaluation: A Cryptographic Game Perspective [5.724350004671127]
機械学習は機械学習モデルを更新し、データ保護規則に従って、特定のトレーニングサンプルから情報を削除する。
近年、多くの未学習アルゴリズムが開発されているにもかかわらず、これらのアルゴリズムの信頼性評価は依然としてオープンな研究課題である。
この研究は、非学習アルゴリズムを実証的に評価するための、新しく信頼性の高いアプローチを示し、より効果的な非学習技術を開発するための道を開いた。
論文 参考訳(メタデータ) (2024-04-17T17:20:27Z) - Credible Teacher for Semi-Supervised Object Detection in Open Scene [106.25850299007674]
Open Scene Semi-Supervised Object Detection (O-SSOD)では、ラベル付きデータはラベル付きデータで観測されていない未知のオブジェクトを含む可能性がある。
より不確実性が、偽ラベルのローカライズと分類精度の低下につながるため、主に自己学習に依存する現在の手法には有害である。
我々は,不確実な擬似ラベルがモデルに誤解をもたらすのを防ぐための,エンドツーエンドのフレームワークであるCredible Teacherを提案する。
論文 参考訳(メタデータ) (2024-01-01T08:19:21Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Evaluating Machine Unlearning via Epistemic Uncertainty [78.27542864367821]
本研究では,不確実性に基づく機械学習アルゴリズムの評価を行う。
これは私たちの最良の知識の一般的な評価の最初の定義です。
論文 参考訳(メタデータ) (2022-08-23T09:37:31Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Unsupervised Domain Adaptation for Speech Recognition via Uncertainty
Driven Self-Training [55.824641135682725]
WSJ をソースドメインとし,TED-Lium 3 とSWITCHBOARD を併用したドメイン適応実験を行った。
論文 参考訳(メタデータ) (2020-11-26T18:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。